Pytorch pb文件转TensorRT 7.0 版本
【摘要】
Pytorch pb文件转TensorRT 7.0 版本
前言环境要求转换步骤githubpb到onnxonnx转trt预测代码
前言
tensorRT的加速效果还是挺明显的。我主要提供两个版本的代码,一个是分类resnet50模型,一个是目标检测yolo的版本。
环境要求
Pytorch==1.2.0 CUDA 10.2 TensorRT 7.0 ...
前言
tensorRT的加速效果还是挺明显的。我主要提供两个版本的代码,一个是分类resnet50模型,一个是目标检测yolo的版本。
环境要求
Pytorch==1.2.0
CUDA 10.2
TensorRT 7.0
转换步骤
pb->onnx(caffe)->trt(tensorRT)
github
https://github.com/yanjingke/tensorRTDemo
pb到onnx
这实际是怕pytorch与TensorRT版本不匹配,所以先读取权重在保存,在读取保存一波。
yolo:
def main(): input_shape = (3, 416, 416) model_onnx_path = "yolov4tiny.onnx" # model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch', 'unet', # in_channels=3, out_channels=1, init_features=32, pretrained=True) model = YoloBody(3, 12).cuda() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') dummy_input = torch.randn(1, 3, 416, 416, device=device) # 用1.7版本读取权重 state_dict = torch.load('logs/Epoch120-Total_Loss0.5324-Val_Loss0.8735.pth', map_location=device) model.load_state_dict(state_dict) # 保存成1.4版本支持的格式 torch.save(model.state_dict(), 'logs/for_onnx.pth', _use_new_zipfile_serialization=False) # Python解释器换成torch1.4的环境,重新读取,导出pytorch1.4版本对应的onnx state_dict = torch.load('logs/for_onnx.pth', map_location=device) model.load_state_dict(state_dict) model.train(False) inputs = ['input_1'] outputs = ['output_1', 'output_2'] dynamic_axes = {'input_1': {0: 'batch'}, 'output_1': {0: 'batch'}} torch.onnx.export(model, dummy_input, model_onnx_path, export_params=True, opset_version=11, do_constant_folding=True, input_names=inputs, output_names=outputs, dynamic_axes=None
resnet50中,因为我在保存ph权重使保存了整个结构和权重所以我直接可以torch.load(),而上面yolo版本pb文件我只保存了权重。
import torch
from torch.autograd import Variable
import onnx
print(torch.__version__)
# torch --> onnx
input_name = ['input']
output_name = ['output']
input = Variable(torch.randn(1, 3, 224, 224)).cuda()
# model = torchvision.models.resnet50(pretrained=True).cuda()
model = torch.load('resnet50.pth', map_location="cuda:0")
torch.onnx.export(model, input, 'resnet50.onnx', input_names=input_name, output_names=output_name, verbose=True)
# 模型可视化
# netron.start('resnet50.onnx')
onnx转trt
使用TensorRT的OSS工具
我的其中trtexec工具在 ./TensorRT-7.0.0.11/bin/trtexec
–verbose,verbose打印日志看着能安心点
trtexec --explicitBatch --onnx=yolov4tiny.onnx --saveEngine=yolov4tiny.trt --fp16 --workspace=512 --verbose
预测代码
yolo预测前向代码
import sys
import os
import time
import argparse
import numpy as np
import cv2
# from PIL import Image
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
from tool.utils import *
try: # Sometimes python2 does not understand FileNotFoundError FileNotFoundError
except NameError: FileNotFoundError = IOError
def GiB(val): return val * 1 << 30
def find_sample_data(description="Runs a TensorRT Python sample", subfolder="", find_files=[]): ''' Parses sample arguments. Args: description (str): Description of the sample. subfolder (str): The subfolder containing data relevant to this sample find_files (str): A list of filenames to find. Each filename will be replaced with an absolute path. Returns: str: Path of data directory. Raises: FileNotFoundError ''' # Standard command-line arguments for all samples. kDEFAULT_DATA_ROOT = os.path.join(os.sep, "usr", "src", "tensorrt", "data") parser = argparse.ArgumentParser(description=description, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("-d", "--datadir", help="Location of the TensorRT sample data directory.", default=kDEFAULT_DATA_ROOT) args, unknown_args = parser.parse_known_args() # If data directory is not specified, use the default. data_root = args.datadir # If the subfolder exists, append it to the path, otherwise use the provided path as-is. subfolder_path = os.path.join(data_root, subfolder) data_path = subfolder_path if not os.path.exists(subfolder_path): print("WARNING: " + subfolder_path + " does not exist. Trying " + data_root + " instead.") data_path = data_root # Make sure data directory exists. if not (os.path.exists(data_path)): raise FileNotFoundError(data_path + " does not exist. Please provide the correct data path with the -d option.") # Find all requested files. for index, f in enumerate(find_files): find_files[index] = os.path.abspath(os.path.join(data_path, f)) if not os.path.exists(find_files[index]): raise FileNotFoundError(find_files[index] + " does not exist. Please provide the correct data path with the -d option.") return data_path, find_files
# Simple helper data class that's a little nicer to use than a 2-tuple.
class HostDeviceMem(object): def __init__(self, host_mem, device_mem): self.host = host_mem self.device = device_mem def __str__(self): return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device) def __repr__(self): return self.__str__()
# Allocates all buffers required for an engine, i.e. host/device inputs/outputs.
def allocate_buffers(engine, batch_size): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) * batch_size dims = engine.get_binding_shape(binding) # in case batch dimension is -1 (dynamic) if dims[0] < 0: size *= -1 dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream
# This function is generalized for multiple inputs/outputs.
# inputs and outputs are expected to be lists of HostDeviceMem objects.
def do_inference(context, bindings, inputs, outputs, stream): # Transfer input data to the GPU. [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs] # Run inference. context.execute_async(bindings=bindings, stream_handle=stream.handle) # Transfer predictions back from the GPU. [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs] # Synchronize the stream stream.synchronize() # Return only the host outputs. return [out.host for out in outputs]
TRT_LOGGER = trt.Logger()
def main(engine_path, image_path, image_size): with get_engine(engine_path) as engine, engine.create_execution_context() as context: buffers = allocate_buffers(engine, 1) IN_IMAGE_H, IN_IMAGE_W = image_size context.set_binding_shape(0, (1, 3, IN_IMAGE_H, IN_IMAGE_W)) image_src = cv2.imread(image_path) num_classes = 80 for i in range(2): # This 'for' loop is for speed check # Because the first iteration is usually longer boxes = detect(context, buffers, image_src, image_size, num_classes) if num_classes == 20: namesfile = 'data/voc.names' elif num_classes == 80: namesfile = 'data/coco.names' else: namesfile = 'data/names' class_names = load_class_names(namesfile) plot_boxes_cv2(image_src, boxes[0], savename='predictions_trt.jpg', class_names=class_names)
def get_engine(engine_path): # If a serialized engine exists, use it instead of building an engine. print("Reading engine from file {}".format(engine_path)) with open(engine_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: return runtime.deserialize_cuda_engine(f.read()) def detect(context, buffers, image_src, image_size, num_classes): IN_IMAGE_H, IN_IMAGE_W = image_size ta = time.time() # Input resized = cv2.resize(image_src, (IN_IMAGE_W, IN_IMAGE_H), interpolation=cv2.INTER_LINEAR) img_in = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB) img_in = np.transpose(img_in, (2, 0, 1)).astype(np.float32) img_in = np.expand_dims(img_in, axis=0) img_in /= 255.0 img_in = np.ascontiguousarray(img_in) print("Shape of the network input: ", img_in.shape) # print(img_in) inputs, outputs, bindings, stream = buffers print('Length of inputs: ', len(inputs)) inputs[0].host = img_in trt_outputs = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream) print('Len of outputs: ', len(trt_outputs)) trt_outputs[0] = trt_outputs[0].reshape(1, -1, 1, 4) trt_outputs[1] = trt_outputs[1].reshape(1, -1, num_classes) tb = time.time() print('-----------------------------------') print(' TRT inference time: %f' % (tb - ta)) print('-----------------------------------') boxes = post_processing(img_in, 0.4, 0.6, trt_outputs) return boxes if __name__ == '__main__': engine_path = sys.argv[1] image_path = sys.argv[2] if len(sys.argv) < 4: image_size = (416, 416) elif len(sys.argv) < 5: image_size = (int(sys.argv[3]), int(sys.argv[3])) else: image_size = (int(sys.argv[3]), int(sys.argv[4])) main(engine_path, image_path, image_size)
resnet预测测试前向计算
mport pycuda.autoinit
import numpy as np
import pycuda.driver as cuda
import tensorrt as trt
import torch
import os
import time
from PIL import Image
import cv2
import torchvision
import pdb
filename = 'xxx/pics/2/5.jpg'
max_batch_size = 1
onnx_model_path = '50.onnx'
TRT_LOGGER = trt.Logger() # This logger is required to build an engine
def softmax(x): x_exp = np.exp(x) #如果是列向量,则axis=0 x_sum = np.sum(x_exp, axis = 1, keepdims = True) s = x_exp / x_sum return s
def get_img_np_nchw(filename): image = cv2.imread(filename) image_cv = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image_cv = cv2.resize(image_cv, (224, 224)) miu = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) img_np = np.array(image_cv, dtype=float) / 255. r = (img_np[:, :, 0] - miu[0]) / std[0] g = (img_np[:, :, 1] - miu[1]) / std[1] b = (img_np[:, :, 2] - miu[2]) / std[2] img_np_t = np.array([r, g, b]) img_np_nchw = np.expand_dims(img_np_t, axis=0) return img_np_nchw
class HostDeviceMem(object): def __init__(self, host_mem, device_mem): """Within this context, host_mom means the cpu memory and device means the GPU memory """ self.host = host_mem self.device = device_mem def __str__(self): return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device) def __repr__(self): return self.__str__()
def allocate_buffers(engine): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream
def get_engine(max_batch_size=1, onnx_file_path="", engine_file_path="", \ fp16_mode=False, int8_mode=False, save_engine=True, ): """Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it.""" def build_engine(max_batch_size, save_engine): """Takes an ONNX file and creates a TensorRT engine to run inference with""" with trt.Builder(TRT_LOGGER) as builder, \ builder.create_network() as network, \ trt.OnnxParser(network, TRT_LOGGER) as parser: builder.max_workspace_size = 1 << 30 # Your workspace size builder.max_batch_size = max_batch_size # pdb.set_trace() builder.fp16_mode = fp16_mode # Default: False builder.int8_mode = int8_mode # Default: False if int8_mode: # To be updated raise NotImplementedError # Parse model file if not os.path.exists(onnx_file_path): quit('ONNX file {} not found'.format(onnx_file_path)) print('Loading ONNX file from path {}...'.format(onnx_file_path)) with open(onnx_file_path, 'rb') as model: print('Beginning ONNX file parsing') parser.parse(model.read()) print('Completed parsing of ONNX file') print('Building an engine from file {}; this may take a while...'.format(onnx_file_path)) engine = builder.build_cuda_engine(network) print("Completed creating Engine") if save_engine: with open(engine_file_path, "wb") as f: f.write(engine.serialize()) return engine # pdb.set_trace() if os.path.exists(engine_file_path): # If a serialized engine exists, load it instead of building a new one. print("Reading engine from file {}".format(engine_file_path)) with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: return runtime.deserialize_cuda_engine(f.read()) else: return build_engine(max_batch_size, save_engine)
def do_inference(context, bindings, inputs, outputs, stream, batch_size=1): # Transfer data from CPU to the GPU. [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs] # Run inference. context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle) # Transfer predictions back from the GPU. [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs] # Synchronize the stream stream.synchronize() # Return only the host outputs. return [out.host for out in outputs]
def postprocess_the_outputs(h_outputs, shape_of_output): h_outputs = h_outputs.reshape(*shape_of_output) return h_outputs
# These two modes are dependent on hardwares
fp16_mode = False
int8_mode = False
trt_engine_path = '/home/yinliang/software/TensorRT-7.0.0.11/bin/resnet50.trt'
# Build an engine
engine = get_engine(max_batch_size, onnx_model_path, trt_engine_path, fp16_mode, int8_mode)
# Create the context for this engine
context = engine.create_execution_context()
# Allocate buffers for input and output
inputs, outputs, bindings, stream = allocate_buffers(engine) # input, output: host # bindings
start = time.time()
# Do inference
img_np_nchw = get_img_np_nchw(filename)
img_np_nchw = img_np_nchw.astype(dtype=np.float32)
shape_of_output = (max_batch_size, 2)
# Load data to the buffer
inputs[0].host = img_np_nchw.reshape(-1)
# inputs[1].host = ... for multiple input
t1 = time.time()
trt_outputs = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream) # numpy data
t2 = time.time()
feat = postprocess_the_outputs(trt_outputs[0], shape_of_output)
result = softmax(feat)
score, index = np.max(result, axis=1), np.argmax(result, axis=1)
print(score[0], index[0])
文章来源: blog.csdn.net,作者:快了的程序猿小可哥,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/qq_35914625/article/details/111640560
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)