验证破解1——Keras搭建yolo4_tiny点选选择验证码破解(点选)
前言
最近闲来无事,和师兄在网上接了几个验证码破解,所以准备为大家提供下我俩前段时间的一些思路。正好我老板叫我多总结下算法思想。开始水博客了。
labelimg的安装
labelimg是我们验证码破解重要的标注工作。其实安装方法很简单,不过要确保你是python3的环境,安装只需要在cmd里面 pip ,这里-i 后面我设置的是国内镜像源,方便快速下载。
pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple/
- 1
安装完成后我们就可以,在控制台输入
labelimg
- 1
得到如下界面
点击Open DIR进行标注,
这里我建议标签名称写1。因为第一步我们只是目标检测,后面我们将会采用孪生网络的思想相似度匹配。最后一步也可以采用ocr的思想,我们之所以没有采用ocr,因为ocr特别费数据,我们懒。
构建好数据集那么,我开始讲解下我们所需要的目标识别网络。在目标识别网路上我们采用了自己复现的YOLOV4-Tiny。之所以采用这个,是因为YOLOV4是YOLOV3的改进版,在YOLOV3的基础上结合了非常多的小Tricks。尽管没有目标检测上革命性的改变,但是YOLOV4依然很好的结合了速度与精度。YoloV4-Tiny是YoloV4的简化版,少了一些结构,但是速度大大增加了,YoloV4共有约6000万参数,YoloV4-Tiny则只有600万参数。如果想要优化速度,还可以采用TensorRt,这里就不做介绍了。
其中yolov4_tiny主干特征提取网络Backbone。我明天将写一篇博客专门介绍yolov4_tiny.
训练部分
yolov4_tiny整体目录如下:
我们将我们标注好的数据放入xml和img里面,
然后点击run运行
就会产生下面这个文件。
在训练前需要修改model_data里面的voc_classes.txt文件,需要将classes改成1。
运行train.py即可开始训练。
预测部分
我们首先修改yolo.py文件
这里修改为训练时候保存的logs下的文件
下面就可以开始预测了。
这是yolov4_tiny的代码,等我讲解完我会完整贴出所有代码。请各位大哥给我点个start。https://github.com/yanjingke/yolov4-tiny-keras_yanzhengma
文章来源: blog.csdn.net,作者:快了的程序猿小可哥,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/qq_35914625/article/details/107940788
- 点赞
- 收藏
- 关注作者
评论(0)