matplotlib scatter 绘制散点图
【摘要】 所属的课程名称及链接[AI基础课程--常用框架工具]环境信息* ModelArts * Notebook - Multi-Engine 2.0 (python3) * JupyterLab - Notebook - Conda-python3 * matplotlib 2.1.0matplotlib scatter 绘制散点图import numpy as npimport...
所属的课程名称及链接
环境信息
- * ModelArts
- * Notebook - Multi-Engine 2.0 (python3)
- * JupyterLab - Notebook - Conda-python3
- * matplotlib 2.1.0
- * JupyterLab - Notebook - Conda-python3
- * Notebook - Multi-Engine 2.0 (python3)
matplotlib scatter 绘制散点图
import numpy as np
import matplotlib.pyplot as plt
x = np.random.randint(0,20,15)
y = np.random.randint(0,20,15)
print("x",x)
print("y",y)
y_ticks = np.arange(0,21)
print("y_ticks",y_ticks)
plt.yticks(np.arange(0,21))
plt.scatter(x,y)
plt.show()
x [19 5 16 17 0 2 9 12 5 19 8 9 1 16 7]
y [16 9 6 17 5 4 10 6 4 14 5 10 3 2 7]
y_ticks [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]
help
help(plt.scatter)
Help on function scatter in module matplotlib.pyplot:
scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)
Make a scatter plot of `x` vs `y`.
Marker size is scaled by `s` and marker color is mapped to `c`.
Parameters
----------
x, y : array_like, shape (n, )
Input data
s : scalar or array_like, shape (n, ), optional
size in points^2. Default is `rcParams['lines.markersize'] ** 2`.
c : color, sequence, or sequence of color, optional, default: 'b'
`c` can be a single color format string, or a sequence of color
specifications of length `N`, or a sequence of `N` numbers to be
mapped to colors using the `cmap` and `norm` specified via kwargs
(see below). Note that `c` should not be a single numeric RGB or
RGBA sequence because that is indistinguishable from an array of
values to be colormapped. `c` can be a 2-D array in which the
rows are RGB or RGBA, however, including the case of a single
row to specify the same color for all points.
marker : `~matplotlib.markers.MarkerStyle`, optional, default: 'o'
See `~matplotlib.markers` for more information on the different
styles of markers scatter supports. `marker` can be either
an instance of the class or the text shorthand for a particular
marker.
cmap : `~matplotlib.colors.Colormap`, optional, default: None
A `~matplotlib.colors.Colormap` instance or registered name.
`cmap` is only used if `c` is an array of floats. If None,
defaults to rc `image.cmap`.
norm : `~matplotlib.colors.Normalize`, optional, default: None
A `~matplotlib.colors.Normalize` instance is used to scale
luminance data to 0, 1. `norm` is only used if `c` is an array of
floats. If `None`, use the default :func:`normalize`.
vmin, vmax : scalar, optional, default: None
`vmin` and `vmax` are used in conjunction with `norm` to normalize
luminance data. If either are `None`, the min and max of the
color array is used. Note if you pass a `norm` instance, your
settings for `vmin` and `vmax` will be ignored.
alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque)
linewidths : scalar or array_like, optional, default: None
If None, defaults to (lines.linewidth,).
verts : sequence of (x, y), optional
If `marker` is None, these vertices will be used to
construct the marker. The center of the marker is located
at (0,0) in normalized units. The overall marker is rescaled
by ``s``.
edgecolors : color or sequence of color, optional, default: None
If None, defaults to 'face'
If 'face', the edge color will always be the same as
the face color.
If it is 'none', the patch boundary will not
be drawn.
For non-filled markers, the `edgecolors` kwarg
is ignored and forced to 'face' internally.
Returns
-------
paths : `~matplotlib.collections.PathCollection`
Other Parameters
----------------
**kwargs : `~matplotlib.collections.Collection` properties
See Also
--------
plot : to plot scatter plots when markers are identical in size and
color
Notes
-----
* The `plot` function will be faster for scatterplots where markers
don't vary in size or color.
* Any or all of `x`, `y`, `s`, and `c` may be masked arrays, in which
case all masks will be combined and only unmasked points will be
plotted.
Fundamentally, scatter works with 1-D arrays; `x`, `y`, `s`, and `c`
may be input as 2-D arrays, but within scatter they will be
flattened. The exception is `c`, which will be flattened only if its
size matches the size of `x` and `y`.
.. note::
In addition to the above described arguments, this function can take a
**data** keyword argument. If such a **data** argument is given, the
following arguments are replaced by **data[<arg>]**:
* All arguments with the following names: 'c', 'color', 'edgecolors', 'facecolor', 'facecolors', 'linewidths', 's', 'x', 'y'.
备注
1. 感谢老师的教学与课件
2. 欢迎各位同学一起来交流学习心得^_^
3. 沙箱实验、认证、论坛和直播,其中包含了许多优质的内容,推荐了解与学习。
2. 欢迎各位同学一起来交流学习心得^_^
3. 沙箱实验、认证、论坛和直播,其中包含了许多优质的内容,推荐了解与学习。
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)