java并发编程的艺术

举报
小米粒-biubiubiu 发表于 2020/12/02 23:36:07 2020/12/02
【摘要】 参考博客 :https://blog.csdn.net/LQL_King/article/details/77146647 Volatile 理解volatile特性的一个好方法是把对volatile变量的单个读/写,看成是使用同一个锁对这些单个读/写操作做了同步。下面通过具体的示例来说明,示例代码如下。 class VolatileFeaturesExample {v...

参考博客https://blog.csdn.net/LQL_King/article/details/77146647

Volatile

理解volatile特性的一个好方法是把对volatile变量的单个读/写,看成是使用同一个锁对这些单个读/写操作做了同步。下面通过具体的示例来说明,示例代码如下。


  
  1. class VolatileFeaturesExample {
  2. volatile long vl = 0L; // 使用volatile声明64位的long型变量
  3. public void set(long l) {
  4. vl = l; // 单个volatile变量的写
  5. }
  6. public void getAndIncrement () {
  7. vl++; // 复合(多个)volatile变量的读/写
  8. }
  9. public long get() {
  10. return vl; // 单个volatile变量的读
  11. }
  12. }


假设有多个线程分别调用上面程序的3个方法,这个程序在语义上和下面程序等价。
 


  
  1. class VolatileFeaturesExample {
  2. long vl = 0L; // 64位的long型普通变量
  3. public synchronized void set(long l) { // 对单个的普通变量的写用同一个锁同步
  4. vl = l;
  5. }
  6. public void getAndIncrement () { // 普通方法调用
  7. long temp = get(); // 调用已同步的读方法
  8. temp += 1L; // 普通写操作
  9. set(temp); // 调用已同步的写方法
  10. }
  11. public synchronized long get() { // 对单个的普通变量的读用同一个锁同步
  12. return vl;
  13. }
  14. }

volatile变量自身具有下列特性。
·可见性。对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写
入。
·原子性:对任意单个volatile变量的读/写具有原子性,但类似于volatile++这种复合操作不
具有原子性。 

 

对于普通同步方法,锁是当前实例对象。
·对于静态同步方法,锁是当前类的Class对象。
·对于同步方法块,锁是Synchonized括号里配置的对象。

当一个线程试图访问同步代码块时,它首先必须得到锁,退出或抛出异常时必须释放锁

 Java支持多个线程同时访问一个对象或者对象的成员变量,由于每个线程可以拥有这个变量的拷贝(虽然对象以及成员变量分配的内存是在共享内存中的,但是每个执行的线程还是可以拥有一份拷贝,这样做的目的是加速程序的执行,这是现代多核处理器的一个显著特性),所以程序在执行过程中,一个线程看到的变量并不一定是最新的。关键字volatile可以用来修饰字段(成员变量),就是告知程序任何对该变量的访问均需要从共享内存中获取,而对它的改变必须同步刷新回共享内存,它能保证所有线程对变量访问的可见性。
举个例子,定义一个表示程序是否运行的成员变量boolean on=true,那么另一个线程可能对它执行关闭动作(on=false),这里涉及多个线程对变量的访问,因此需要将其定义成为volatile boolean on=true,这样其他线程对它进行改变时,可以让所有线程感知到变化,因为所有对on变量的访问和修改都需要以共享内存为准。但是,过多地使用volatile是不必要的,因为它会降低程序执行的效率。关键字synchronized可以修饰方法或者以同步块的形式来进行使用,它主要确保多个线程在同一个时刻,只能有一个线程处于方法或者同步块中,它保证了线程对变量访问的可见性和排他性。

wait()  /  notify()

调用wait()、notify()以及notifyAll()时需要注意的细节,如下。
1)使用wait()、notify()和notifyAll()时需要先对调用对象加锁。
2)调用wait()方法后,线程状态由RUNNING变为WAITING,并将当前线程放置到对象的等待队列。
3)notify()或notifyAll()方法调用后,等待线程依旧不会从wait()返回,需要调用notify()或notifAll()的线程释放锁之后,等待线程才有机会从wait()返回。
4)notify()方法将等待队列中的一个等待线程从等待队列中移到同步队列中,而notifyAll()方法则是将等待队列中所有的线程全部移到同步队列,被移动的线程状态由WAITING变为BLOCKED。
5)从wait()方法返回的前提是获得了调用对象的锁。

管道输入/输出流

管道输入/输出流和普通的文件输入/输出流或者网络输入/输出流不同之处在于,它主要用于线程之间的数据传输,而传输的媒介为内存。
管道输入/输出流主要包括了如下4种具体实现:PipedOutputStream、PipedInputStream、PipedReader和PipedWriter,前两种面向字节,而后两种面向字符。
在代码清单4-12所示的例子中,创建了printThread,它用来接受main线程的输入,任何main线程的输入均通过PipedWriter写入,而printThread在另一端通过PipedReader将内容读出并打印。


  
  1. public class Piped {
  2. public static void main(String[] args) throws Exception {
  3. PipedWriter out = new PipedWriter();
  4. PipedReader in = new PipedReader();
  5. // 将输出流和输入流进行连接,否则在使用时会抛出IOException
  6. out.connect(in);
  7. Thread printThread = new Thread(new Print(in), "PrintThread");
  8. printThread.start();
  9. int receive = 0;
  10. try {
  11. while ((receive = System.in.read()) != -1) {
  12. out.write(receive);
  13. }
  14. } finally {
  15. out.close();
  16. }
  17. }
  18. static class Print implements Runnable {
  19. private PipedReader in;
  20. public Print(PipedReader in) {
  21. this.in = in;
  22. }
  23. public void run() {
  24. int receive = 0;
  25. try {
  26. while ((receive = in.read()) != -1) {
  27. System.out.print((char) receive);
  28. }
  29. } catch (IOException ex) {
  30. }
  31. }
  32. }
  33. }

对于Piped类型的流,必须先要进行绑定,也就是调用connect()方法,如果没有将输入/输出流绑定起来,对于该流的访问将会抛出异常。

 

LOCK(重入锁与读写锁)


  
  1. Lock lock = new ReentrantLock(); //重入锁(可多次上锁)
  2. lock.lock();
  3. try {
  4. } finally {
  5. lock.unlock();
  6. }

在finally块中释放锁,目的是保证在获取到锁之后,最终能够被释放。
不要将获取锁的过程写在try块中,因为如果在获取锁(自定义锁的实现)时发生了异常,异常抛出的同时,也会导致锁无故释放。

表5-1 Lock接口提供的synchronized关键字不具备的主要特性

之前提到锁(如Mutex和ReentrantLock)基本都是排他锁,这些锁在同一时刻只允许一个线程进行访问,而读写锁在同一时刻可以允许多个读线程访问,但是在写线程访问时,所有的读线程和其他写线程均被阻塞。读写锁维护了一对锁,一个读锁和一个写锁,通过分离读锁和写锁,使得并发性相比一般的排他锁有了很大提升。
除了保证写操作对读操作的可见性以及并发性的提升之外,读写锁能够简化读写交互场景的编程方式。假设在程序中定义一个共享的用作缓存数据结构,它大部分时间提供读服务(例如查询和搜索),而写操作占有的时间很少,但是写操作完成之后的更新需要对后续的读服务可见。
在没有读写锁支持的(Java 5之前)时候,如果需要完成上述工作就要使用Java的等待通知机制,就是当写操作开始时,所有晚于写操作的读操作均会进入等待状态,只有写操作完成并进行通知之后,所有等待的读操作才能继续执行(写操作之间依靠synchronized关键进行同步),这样做的目的是使读操作能读取到正确的数据,不会出现脏读。改用读写锁实现上述功
能,只需要在读操作时获取读锁,写操作时获取写锁即可。当写锁被获取到时,后续(非当前写操作线程)的读写操作都会被阻塞,写锁释放之后,所有操作继续执行,编程方式相对于使用等待通知机制的实现方式而言,变得简单明了。

一般情况下,读写锁的性能都会比排它锁好,因为大多数场景读是多于写的。在读多于写的情况下,读写锁能够提供比排它锁更好的并发性和吞吐量。Java并发包提供读写锁的实现是ReentrantReadWriteLock,它提供的特性如表5-8所示。

 当需要阻塞或唤醒一个线程的时候,都会使用LockSupport工具类来完成相应工作。LockSupport定义了一组的公共静态方法,这些方法提供了最基本的线程阻塞和唤醒功能,而LockSupport也成为构建同步组件的基础工具。
LockSupport定义了一组以park开头的方法用来阻塞当前线程,以及unpark(Thread thread)方法来唤醒一个被阻塞的线程。Park有停车的意思,假设线程为车辆,那么park方法代表着停车,而unpark方法则是指车辆启动离开,这些方法以及描述如表5-10所示。

表5-10 LockSupport提供的阻塞和唤醒方法
在Java 6中,LockSupport增加了park(Object blocker)、parkNanos(Object blocker,long nanos)和parkUntil(Object blocker,long deadline)3个方法,用于实现阻塞当前线程的功能,其中参数blocker是用来标识当前线程在等待的对象(以下称为阻塞对象),该对象主要用于问题排查和系统监控。


下面的示例中,将对比parkNanos(long nanos)方法和parkNanos(Object blocker,long nanos)方法来展示阻塞对象blocker的用处,代码片段和线程dump(部分)如表5-11所示。
从表5-11的线程dump结果可以看出,代码片段的内容都是阻塞当前线程10秒,但从线程dump结果可以看出,有阻塞对象的parkNanos方法能够传递给开发人员更多的现场信息。这是由于在Java 5之前,当线程阻塞(使用synchronized关键字)在一个对象上时,通过线程dump能够查看到该线程的阻塞对象,方便问题定位,而Java 5推出的Lock等并发工具时却遗漏了这一
点,致使在线程dump时无法提供阻塞对象的信息。因此,在Java 6中,LockSupport新增了上述3个含有阻塞对象的park方法,用以替代原有的park方法。

Condition


  
  1. public class BoundedQueue<T> {
  2. private Object[] items;
  3. // 添加的下标,删除的下标和数组当前数量
  4. private int addIndex, removeIndex, count;
  5. private Lock lock = new ReentrantLock();
  6. private Condition notEmpty = lock.newCondition();
  7. private Condition notFull = lock.newCondition();
  8. public BoundedQueue(int size) {
  9. items = new Object[size];
  10. }
  11. // 添加一个元素,如果数组满,则添加线程进入等待状态,直到有"空位"
  12. public void add(T t) throws InterruptedException {
  13. lock.lock();
  14. try {
  15. while (count == items.length)
  16. notFull.await();
  17. items[addIndex] = t;
  18. if (++addIndex == items.length)
  19. addIndex = 0;
  20. ++count;
  21. notEmpty.signal();
  22. } finally {
  23. lock.unlock();
  24. }
  25. }
  26. // 由头部删除一个元素,如果数组空,则删除线程进入等待状态,直到有新添加元素
  27. @SuppressWarnings("unchecked")
  28. public T remove() throws InterruptedException {
  29. lock.lock();
  30. try {
  31. while (count == 0)
  32. notEmpty.await();
  33. Object x = items[removeIndex];
  34. if (++removeIndex == items.length)
  35. removeIndex = 0;
  36. --count;
  37. notFull.signal();
  38. return (T) x;
  39. } finally {
  40. lock.unlock();
  41. }
  42. }
  43. }


上述示例中,BoundedQueue通过add(T t)方法添加一个元素,通过remove()方法移出一个元素。以添加方法为例。
首先需要获得锁,目的是确保数组修改的可见性和排他性。当数组数量等于数组长度时,表示数组已满,则调用notFull.await(),当前线程随之释放锁并进入等待状态。如果数组数量不等于数组长度,表示数组未满,则添加元素到数组中,同时通知等待在notEmpty上的线程,数组中已经有新元素可以获取。在添加和删除方法中使用while循环而非if判断,目的是防止过早或意外的通知,只有条件符合才能够退出循环。回想之前提到的等待/通知的经典范式,二者是非常类似的。

Java里的阻塞队列
JDK 7提供了7个阻塞队列,如下。
·ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列。
·LinkedBlockingQueue:一个由链表结构组成的有界阻塞队列。
·PriorityBlockingQueue:一个支持优先级排序的无界阻塞队列。
·DelayQueue:一个使用优先级队列实现的无界阻塞队列。
·SynchronousQueue:一个不存储元素的阻塞队列。
·LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
·LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。

 

1.ArrayBlockingQueue
ArrayBlockingQueue是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。
默认情况下不保证线程公平的访问队列,所谓公平访问队列是指阻塞的线程,可以按照阻塞的先后顺序访问队列,即先阻塞线程先访问队列。非公平性是对先等待的线程是非公平的,当队列可用时,阻塞的线程都可以争夺访问队列的资格,有可能先阻塞的线程最后才访问队列。为了保证公平性,通常会降低吞吐量。我们可以使用以下代码创建一个公平的阻塞队列。


  
  1. ArrayBlockingQueue fairQueue = new ArrayBlockingQueue(1000,true);
  2. 访问者的公平性是使用可重入锁实现的,代码如下。
  3. public ArrayBlockingQueue(int capacity, boolean fair) {
  4. if (capacity <= 0)
  5. throw new IllegalArgumentException();
  6. this.items = new Object[capacity];
  7. lock = new ReentrantLock(fair);
  8. notEmpty = lock.newCondition();
  9. notFull = lock.newCondition();
  10. }


2.LinkedBlockingQueue
LinkedBlockingQueue是一个用链表实现的有界阻塞队列。此队列的默认和最大长度为Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。
3.PriorityBlockingQueue
PriorityBlockingQueue是一个支持优先级的无界阻塞队列。默认情况下元素采取自然顺序升序排列。也可以自定义类实现compareTo()方法来指定元素排序规则,或者初始化PriorityBlockingQueue时,指定构造参数Comparator来对元素进行排序。需要注意的是不能保证同优先级元素的顺序。
4.DelayQueue
DelayQueue是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。队列中的元素必须实现Delayed接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。
DelayQueue非常有用,可以将DelayQueue运用在以下应用场景。
·缓存系统的设计:可以用DelayQueue保存缓存元素的有效期,使用一个线程循环查询
DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了。
·定时任务调度:使用DelayQueue保存当天将会执行的任务和执行时间,一旦从
DelayQueue中获取到任务就开始执行,比如TimerQueue就是使用DelayQueue实现的。
(1)如何实现Delayed接口
DelayQueue队列的元素必须实现Delayed接口。我们可以参考ScheduledThreadPoolExecutor
里ScheduledFutureTask类的实现,一共有三步。
第一步:在对象创建的时候,初始化基本数据。使用time记录当前对象延迟到什么时候可
以使用,使用sequenceNumber来标识元素在队列中的先后顺序。代码如下。


  
  1. private static final AtomicLong sequencer = new AtomicLong(0);
  2. ScheduledFutureTask(Runnable r, V result, long ns, long period) {
  3. ScheduledFutureTask(Runnable r, V result, long ns, long period) {
  4. super(r, result);
  5. this.time = ns;
  6. this.period = period;
  7. this.sequenceNumber = sequencer.getAndIncrement();
  8. }

第二步:实现getDelay方法,该方法返回当前元素还需要延时多长时间,单位是纳秒,代码
如下。


  
  1. public long getDelay(TimeUnit unit) {
  2. return unit.convert(time - now(), TimeUnit.NANOSECONDS);
  3. }

通过构造函数可以看出延迟时间参数ns的单位是纳秒,自己设计的时候最好使用纳秒,因
为实现getDelay()方法时可以指定任意单位,一旦以秒或分作为单位,而延时时间又精确不到
纳秒就麻烦了。使用时请注意当time小于当前时间时,getDelay会返回负数。
第三步:实现compareTo方法来指定元素的顺序。例如,让延时时间最长的放在队列的末
尾。实现代码如下。


  
  1. public int compareTo(Delayed other) {
  2. if (other == this) // compare zero ONLY if same object
  3. return 0;
  4. if (other instanceof ScheduledFutureTask) {
  5. ScheduledFutureTask<> x = (ScheduledFutureTask<>)other;
  6. long diff = time - x.time;
  7. if (diff < 0)
  8. return -1;
  9. else if (diff > 0)
  10. return 1;
  11. else if (sequenceNumber < x.sequenceNumber)
  12. return -1;
  13. else
  14. return 1;
  15. }
  16. long d = (getDelay(TimeUnit.NANOSECONDS) -
  17. other.getDelay(TimeUnit.NANOSECONDS));
  18. return (d == 0) 0 : ((d < 0) -1 : 1);
  19. }

(2)如何实现延时阻塞队列
延时阻塞队列的实现很简单,当消费者从队列里获取元素时,如果元素没有达到延时时
间,就阻塞当前线程。


  
  1. public int compareTo(Delayed other) {
  2. if (other == this) // compare zero ONLY if same object
  3. return 0;
  4. if (other instanceof ScheduledFutureTask) {
  5. ScheduledFutureTask<> x = (ScheduledFutureTask<>)other;
  6. long diff = time - x.time;
  7. if (diff < 0)
  8. return -1;
  9. else if (diff > 0)
  10. return 1;
  11. else if (sequenceNumber < x.sequenceNumber)
  12. return -1;
  13. else
  14. return 1;
  15. }
  16. long d = (getDelay(TimeUnit.NANOSECONDS) -
  17. other.getDelay(TimeUnit.NANOSECONDS));
  18. return (d == 0) 0 : ((d < 0) -1 : 1);
  19. }

代码中的变量leader是一个等待获取队列头部元素的线程。如果leader不等于空,表示已
经有线程在等待获取队列的头元素。所以,使用await()方法让当前线程等待信号。如果leader
等于空,则把当前线程设置成leader,并使用awaitNanos()方法让当前线程等待接收信号或等
待delay时间。
5.SynchronousQueue
SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,
否则不能继续添加元素。
它支持公平访问队列。默认情况下线程采用非公平性策略访问队列。使用以下构造方法
可以创建公平性访问的SynchronousQueue,如果设置为true,则等待的线程会采用先进先出的
顺序访问队列。


  
  1. public SynchronousQueue(boolean fair) {
  2. transferer = fair new TransferQueue() : new TransferStack();
  3. }

SynchronousQueue可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费
者线程。队列本身并不存储任何元素,非常适合传递性场景。SynchronousQueue的吞吐量高于
LinkedBlockingQueue和ArrayBlockingQueue。
6.LinkedTransferQueue
LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。相对于其他阻
塞队列,LinkedTransferQueue多了tryTransfer和transfer方法。
(1)transfer方法
如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法
时),transfer方法可以把生产者传入的元素立刻transfer(传输)给消费者。如果没有消费者在等
待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返
回。transfer方法的关键代码如下。
Node pred = tryAppend(s, haveData);
return awaitMatch(s, pred, e, (how == TIMED), nanos);
第一行代码是试图把存放当前元素的s节点作为tail节点。第二行代码是让CPU自旋等待
消费者消费元素。因为自旋会消耗CPU,所以自旋一定的次数后使用Thread.yield()方法来暂停
当前正在执行的线程,并执行其他线程。
(2)tryTransfer方法
tryTransfer方法是用来试探生产者传入的元素是否能直接传给消费者。如果没有消费者等
待接收元素,则返回false。和transfer方法的区别是tryTransfer方法无论消费者是否接收,方法
立即返回,而transfer方法是必须等到消费者消费了才返回。
对于带有时间限制的tryTransfer(E e,long timeout,TimeUnit unit)方法,试图把生产者传入
的元素直接传给消费者,但是如果没有消费者消费该元素则等待指定的时间再返回,如果超
时还没消费元素,则返回false,如果在超时时间内消费了元素,则返回true。
7.LinkedBlockingDeque
LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。所谓双向队列指的是可以
从队列的两端插入和移出元素。双向队列因为多了一个操作队列的入口,在多线程同时入队
时,也就减少了一半的竞争。相比其他的阻塞队列,LinkedBlockingDeque多了addFirst、
addLast、offerFirst、offerLast、peekFirst和peekLast等方法,以First单词结尾的方法,表示插入、
获取(peek)或移除双端队列的第一个元素。以Last单词结尾的方法,表示插入、获取或移除双
端队列的最后一个元素。另外,插入方法add等同于addLast,移除方法remove等效于
removeFirst。但是take方法却等同于takeFirst,不知道是不是JDK的bug,使用时还是用带有First
和Last后缀的方法更清楚。
在初始化LinkedBlockingDeque时可以设置容量防止其过度膨胀。另外,双向阻塞队列可以
运用在“工作窃取”模式中。

线程池

java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池。在开发过程中,合理地使用线程池能够带来3个好处。
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,
还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是,要做到合理利用线程池,必须对其实现原理了如指掌。

ThreadPoolExecutor执行execute方法分下面4种情况。
1)如果当前运行的线程少于corePoolSize,则创建新线程来执行任务(注意,执行这一步骤需要获取全局锁)。
2)如果运行的线程等于或多于corePoolSize,则将任务加入BlockingQueue。
3)如果无法将任务加入BlockingQueue(队列已满),则创建新的线程来处理任务(注意,执行这一步骤需要获取全局锁)。
4)如果创建新线程将使当前运行的线程超出maximumPoolSize,任务将被拒绝,并调用
RejectedExecutionHandler.rejectedExecution()方法。

想合理地配置线程池,就必须首先分析任务特性,可以从以下几个角度来分析。
·任务的性质:CPU密集型任务、IO密集型任务和混合型任务。
·任务的优先级:高、中和低。
·任务的执行时间:长、中和短。
·任务的依赖性:是否依赖其他系统资源,如数据库连接。
性质不同的任务可以用不同规模的线程池分开处理。CPU密集型任务应配置尽可能小的线程,如配置N cpu +1个线程的线程池。由于IO密集型任务线程并不是一直在执行任务,则应配置尽可能多的线程,如2*N cpu 。混合型的任务,如果可以拆分,将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐量将高于串行执行的吞吐量。如果这两个任务执行时间相差太大,则没必要进行分解。可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。

 

建议使用有界队列。有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点儿,比如几千。有一次,我们系统里后台任务线程池的队列和线程池全满了,不断抛出抛弃任务的异常,通过排查发现是数据库出现了问题,导致执行SQL变得非常缓慢,因为后台任务线程池里的任务全是需要向数据库查询和插入数据的,所以导致线程池里的工作线程全部阻塞,任务积压在线程池里。如果当时我们设置成无界队列,那么线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。当然,我们的系统所有的任务是用单独的服务器部署的,我们使用不同规模的线程池完成不同类型的任务,但是出现这样问题时也会影响到其他任务.

可以通过调用线程池的shutdown或shutdownNow方法来关闭线程池。它们的原理是遍历线程池中的工作线程,然后逐个调用线程的interrupt方法来中断线程,所以无法响应中断的任务可能永远无法终止。但是它们存在一定的区别,shutdownNow首先将线程池的状态设置成STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表,而shutdown只是将线程池的状态设置成SHUTDOWN状态,然后中断所有没有正在执行任务的线程。

只要调用了这两个关闭方法中的任意一个,isShutdown方法就会返回true。当所有的任务都已关闭后,才表示线程池关闭成功,这时调用isTerminaed方法会返回true。至于应该调用哪一种方法来关闭线程池,应该由提交到线程池的任务特性决定,通常调用shutdown方法来关闭线程池,如果任务不一定要执行完,则可以调用shutdownNow方法。

 

如果在系统中大量使用线程池,则有必要对线程池进行监控,方便在出现问题时,可以根据线程池的使用状况快速定位问题。可以通过线程池提供的参数进行监控,在监控线程池的时候可以使用以下属性。
·taskCount:线程池需要执行的任务数量。
·completedTaskCount:线程池在运行过程中已完成的任务数量,小于或等于taskCount。
·largestPoolSize:线程池里曾经创建过的最大线程数量。通过这个数据可以知道线程池是
否曾经满过。如该数值等于线程池的最大大小,则表示线程池曾经满过。
·getPoolSize:线程池的线程数量。如果线程池不销毁的话,线程池里的线程不会自动销
毁,所以这个大小只增不减。
·getActiveCount:获取活动的线程数。

文章来源: blog.csdn.net,作者:血煞风雨城2018,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/qq_31905135/article/details/82107034

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。