MapReduce快速入门系列(9) | Shuffle之Combiner合并
Hello,大家好!博主上篇讲解了分区,这篇要讲的是合并操作。如何讲解这个章节呢?首先先对什么是合并进行解释,然后通过案例进行证明。
一. Combiner合并的简单介绍
今天我们讲的是Shuffle中的第七步
每一个 map 都可能会产生大量的本地输出,Combiner 的作用就是对map 端的输出先做一次合并,以减少在 map 和 reduce 节点之间的数据传输量,以提高网络IO 性能,是 MapReduce 的一种优化手段之一。
- 1. Combiner是MR程序中Mapper和Reducer之外的一种组件。
- 2. Combiner组件的父类就是Reducer。
- 3. Combiner和Reducer的区别在于运行的位置
Combiner是在每一个MapTask所在的节点运行;
Reducer是接收全局所有Mapper的输出结果; - 4. Combiner的意义就是对每一个MapTask的输出进行局部汇总,以减少网络传输量。
二. 通过图片了解使用Combiner和不使用的区别
- 1. 未使用combiner的网络开销
- 2. 使用combiner的网络开销
可以很明显的看出在combiner阶段,通过合并同一个区中相同key的value值,减小了后续的数据传输,从而提高了网络的io
!
但在MapReduce中,combiner是默认不开启的。为什么呢?是因为数据合并并不适用所有的业务需求,如果是计算个数,求和combiner还能发挥它的优势!但如果是求平均数,combiner必不可免的会影响到最终的结果,使结果变得不可靠!所以当我们需要到combiner时,需要手动开启。
- 3. 自定义Combiner实现步骤
①自定义一个Combiner继承Reducer,重写Reduce方法
public class WordcountCombiner extends Reducer<Text, IntWritable, Text,IntWritable>{
@Override
protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { // 1 汇总操作
int count = 0;
for(IntWritable v :values){ count += v.get();
} // 2 写出
context.write(key, new IntWritable(count));
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
②在Job驱动类中设置:
job.setCombinerClass(WordcountCombiner.class);
三. 代码实现
注:用于对比的程序源代码为《MapReduce系列(2) | 统计输出给定的文本文档每一个单词出现的总次数》中的源代码,有想进行对比的同学,可以自行复制创建对比(其实本源码就比源代码多一行)。
3.1 编写Mapper类
package com.buwenbuhuo.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
/**
* @author 卜温不火
* @create 2020-04-22 21:24
* com.buwenbuhuo.wordcount - the name of the target package where the new class or interface will be created.
* mapreduce0422 - the name of the current project.
*/
public class WcMapper extends Mapper<LongWritable, Text, Text, IntWritable> { Text k = new Text(); IntWritable v = new IntWritable(1); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1 获取一行 String line = value.toString(); // 2 切割 String[] words = line.split(" "); // 3 输出 for (String word : words) { k.set(word); context.write(k, v); } }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
3.2 编写Reducer类
package com.buwenbuhuo.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
/**
* @author 卜温不火
* @create 2020-04-22 21:24
* com.buwenbuhuo.wordcount - the name of the target package where the new class or interface will be created.
* mapreduce0422 - the name of the current project.
*/
public class WcReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ int sum; IntWritable v = new IntWritable(); @Override protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { // 1 累加求和 sum = 0; for (IntWritable count : values) { sum += count.get(); } // 2 输出 v.set(sum); context.write(key,v); }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
3.3 编写Driver驱动类
package com.buwenbuhuo.wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* @author 卜温不火
* @create 2020-04-22 21:24
* com.buwenbuhuo.wordcount - the name of the target package where the new class or interface will be created.
* mapreduce0422 - the name of the current project.
*/
public class WcDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { // 1 获取配置信息以及封装任务 Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); // 2 设置jar加载路径 job.setJarByClass(WcDriver.class); // 3 设置map和reduce类 job.setMapperClass(WcMapper.class); job.setReducerClass(WcReducer.class); // 4 设置map输出 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); //
// 仅此一行添加
job.setCombinerClass(WcReducer.class); // 5 设置最终输出kv类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); // 6 设置输入和输出路径 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); // 7 提交 boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
四. 对比及结论
-
1. 对比
-
2. Combiner能够应用的前提是不能影响最终的业务逻辑,而且,Combiner的输出kv应该跟Reducer的输入kv类型要对应起来。
本次的分享就到这里了,大家有什么疑惑或者好的建议可以在评论区积极留言。受益的小伙伴们不要忘了点赞关注我呀!!!
文章来源: buwenbuhuo.blog.csdn.net,作者:不温卜火,版权归原作者所有,如需转载,请联系作者。
原文链接:buwenbuhuo.blog.csdn.net/article/details/105737694
- 点赞
- 收藏
- 关注作者
评论(0)