Kafka快速入门系列(12) | Kafka Streams的简单介绍
本篇博主带来的是Kafka Streams的相关知识。
1. 什么是Kafka Streams
Kafka Streams。Apache Kafka开源项目的一个组成部分。是一个功能强大,易于使用的库。用于在Kafka上构建高可分布式、拓展性,容错的应用程序。
2. Kafka Streams特点
- 1.功能强大
- 高扩展性,弹性,容错
- 2.轻量级
- 无需专门的集群
- 一个库,而不是框架
- 3.完全集成
- 100%的Kafka 0.10.0版本兼容
- 易于集成到现有的应用程序
- 4.实时性
- 毫秒级延迟
- 并非微批处理
- 窗口允许乱序数据
- 允许迟到数据
3. 为什么要有Kafka Stream
当前已经有非常多的流式处理系统,最知名且应用最多的开源流式处理系统有Spark Streaming和Apache Storm。Apache Storm发展多年,应用广泛,提供记录级别的处理能力,当前也支持SQL on Stream。而Spark Streaming基于Apache Spark,可以非常方便与图计算,SQL处理等集成,功能强大,对于熟悉其它Spark应用开发的用户而言使用门槛低。另外,目前主流的Hadoop发行版,如Cloudera和Hortonworks,都集成了Apache Storm和Apache Spark,使得部署更容易。
既然Apache Spark与Apache Storm拥用如此多的优势,那为何还需要Kafka Stream呢?主要有如下原因。
第一,Spark和Storm都是流式处理框架,而Kafka Stream提供的是一个基于Kafka的流式处理类库
。框架要求开发者按照特定的方式去开发逻辑部分,供框架调用。开发者很难了解框架的具体运行方式,从而使得调试成本高,并且使用受限。而Kafka Stream作为流式处理类库,直接提供具体的类给开发者调用,整个应用的运行方式主要由开发者控制,方便使用和调试。
第二,虽然Cloudera与Hortonworks方便了Storm和Spark的部署,但是这些框架的部署仍然相对复杂。而Kafka Stream作为类库,可以非常方便的嵌入应用程序中,它对应用的打包和部署基本没有任何要求
。
第三,就流式处理系统而言,基本都支持Kafka作为数据源。例如Storm具有专门的kafka-spout,而Spark也提供专门的spark-streaming-kafka模块。事实上,Kafka基本上是主流的流式处理系统的标准数据源。换言之,大部分流式系统中都已部署了Kafka,此时使用Kafka Stream的成本非常低
。
第四,使用Storm或Spark Streaming时,需要为框架本身的进程预留资源
,如Storm的supervisor和Spark on YARN的node manager。即使对于应用实例而言,框架本身也会占用部分资源,如Spark Streaming需要为shuffle和storage预留内存。但是Kafka作为类库不占用系统资源。
第五,由于Kafka本身提供数据持久化
,因此Kafka Stream提供滚动部署和滚动升级以及重新计算的能力。
第六,由于Kafka Consumer Rebalance机制,Kafka Stream可以在线动态调整并行度
。
4. Kafka Stream数据清洗案例
1. 需求
实时处理单词带有”>>>”前缀的内容。例如输入”buwenbuhuo>>>ximenqing”,最终处理成“ximenqing”
2. 需求分析
3. 案例实操
- 1. 创建主类
package com.buwenbuhuo.kafka.KafkaStream;
import java.util.Properties;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.processor.Processor;
import org.apache.kafka.streams.processor.ProcessorSupplier;
import org.apache.kafka.streams.processor.TopologyBuilder;
/**
* @author 卜温不火
* @create 2020-05-07 18:15
* com.buwenbuhuo.kafka.KafkaStream - the name of the target package where the new class or interface will be created.
* kafka0506 - the name of the current project.
*/
public class Application { public static void main(String[] args) { // 定义输入的topic String from = "first"; // 定义输出的topic String to = "second"; // 设置参数 Properties settings = new Properties(); settings.put(StreamsConfig.APPLICATION_ID_CONFIG, "logFilter"); settings.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop002:9092"); StreamsConfig config = new StreamsConfig(settings); // 构建拓扑 TopologyBuilder builder = new TopologyBuilder(); builder.addSource("SOURCE", from) .addProcessor("PROCESS", new ProcessorSupplier<byte[], byte[]>() { @Override public Processor<byte[], byte[]> get() { // 具体分析处理 return new LogProcessor(); } }, "SOURCE") .addSink("SINK", to, "PROCESS"); // 创建kafka stream KafkaStreams streams = new KafkaStreams(builder, config); streams.start(); }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 2. 具体业务处理
package com.buwenbuhuo.kafka.KafkaStream;
import org.apache.kafka.streams.processor.Processor;
import org.apache.kafka.streams.processor.ProcessorContext;
/**
* @author 卜温不火
* @create 2020-05-07 18:15
* com.buwenbuhuo.kafka.KafkaStream - the name of the target package where the new class or interface will be created.
* kafka0506 - the name of the current project.
*/
public class LogProcessor implements Processor<byte[], byte[]> { private ProcessorContext context; @Override public void init(ProcessorContext context) { this.context = context; } @Override public void process(byte[] key, byte[] value) { String input = new String(value); // 如果包含“>>>”则只保留该标记后面的内容 if (input.contains(">>>")) { input = input.split(">>>")[1].trim(); // 输出到下一个topic context.forward("logProcessor".getBytes(), input.getBytes()); }else{ context.forward("logProcessor".getBytes(), input.getBytes()); } } @Override public void punctuate(long timestamp) { } @Override public void close() { }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 3. 运行
- 4. 在hadoop004上启动生产者
[bigdata@hadoop004 kafka]$ bin/kafka-console-producer.sh \
--broker-list hadoop002:9092 --topic first
>hello>>>world
>h>>>buwenbuhuo
>hahaha
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 5. 在hadoop003上启动消费者
[bigdata@hadoop003 kafka]$ bin/kafka-console-consumer.sh \
--zookeeper hadoop002:2181 --from-beginning --topic second
world
buwenbuhuo
hahaha
- 1
- 2
- 3
- 4
- 5
- 6
- 7
本次的分享就到这里了,
看 完 就 赞 , 养 成 习 惯 ! ! ! \color{#FF0000}{看完就赞,养成习惯!!!} 看完就赞,养成习惯!!!^ _ ^ ❤️ ❤️ ❤️
码字不易,大家的支持就是我坚持下去的动力。点赞后不要忘了关注我哦!
文章来源: buwenbuhuo.blog.csdn.net,作者:不温卜火,版权归原作者所有,如需转载,请联系作者。
原文链接:buwenbuhuo.blog.csdn.net/article/details/105977459
- 点赞
- 收藏
- 关注作者
评论(0)