knn算法分类准确度(五)
【摘要】 分类准确度 准确度用accuracy表示: 代码实现准确率计算:import numpy as npimport matplotlibimport matplotlib.pyplot as pltfrom sklearn import datasets#加载手写数字集图片数据digits = datasets.load_digits()#查看该数据集的描述信息digits.DES...
分类准确度
准确度用accuracy表示:
代码实现准确率计算:
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn import datasets
#加载手写数字集图片数据
digits = datasets.load_digits()
#查看该数据集的描述信息
digits.DESCR
#查看数据集的shape
X = digits.data
X.shape
y = digits.target
y.shape
取出某个数据集绘制图像:
some_digit = X[666]
y[666]
#将数据集变为(8,8)的二维数据
some_digit_image = some_digit.reshape(8,8)
#绘制二维图片
plt.imshow(some_digit_image,cmap=matplotlib.cm.binary)
plt.show()
利用knn算法进行分类预测:
from knn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_ratio=0.2)
from knn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y)
from knn.kNN import KNNClassifier
knn_clf = KNNClassifier(k=6)
knn_clf.fit(X_train,y_train)
y_predict = knn_clf.predict(X_test)
计算准确率:
sum(y_predict==y_test)/y_test.shape[0]
封装为代码metrics.py:
import numpy as np
def accuracy_score(y_true, y_predict):
"""计算y_true和y_predict之间的准确率"""
assert len(y_true) == len(y_predict), \
"the size of y_true must be equal to the size of y_predict"
return np.sum(y_true == y_predict) / y_test.shape[0]
应用算法进行计算:
from knn.metrics import accuracy_score
accuracy_score(y_test,y_predict)
将准确率代码整合封装到kNN.py中
上述计算准确率的方式,必须用到y_predict,也就是必须进行预测
在实际开发的某些情况下,开发者可能不想去进行预测,直接得到准确率
修改kNN.py,代码如下:
import numpy as np
from math import sqrt
from collections import Counter
#新添加的代码
from .metrics import accuracy_score
class KNNClassifier:
def __init__(self, k):
"""初始化kNN分类器"""
assert k >= 1, "k must be valid"
self.k = k
self._X_train = None
self._y_train = None
def fit(self, X_train, y_train):
"""根据训练数据集X_train和y_train训练kNN分类器"""
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must be equal to the size of y_train"
assert self.k <= X_train.shape[0], \
"the size of X_train must be at least k."
self._X_train = X_train
self._y_train = y_train
return self
def predict(self, X_predict):
"""给定待预测数据集X_predict,返回表示X_predict的结果向量"""
assert self._X_train is not None and self._y_train is not None, \
"must fit before predict!"
assert X_predict.shape[1] == self._X_train.shape[1], \
"the feature number of X_predict must be equal to X_train"
y_predict = [self._predict(x) for x in X_predict]
return np.array(y_predict)
def _predict(self, x):
"""给定单个待预测数据x,返回x的预测结果值"""
assert x.shape[0] == self._X_train.shape[1], \
"the feature number of x must be equal to X_train"
distances = [sqrt(np.sum((x_train - x) ** 2))
for x_train in self._X_train]
nearest = np.argsort(distances)
topK_y = [self._y_train[i] for i in nearest[:self.k]]
votes = Counter(topK_y)
return votes.most_common(1)[0][0]
#新添加的代码
def score(self, X_test, y_test):
"""根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
y_predict = self.predict(X_test)
return accuracy_score(y_test, y_predict)
def __repr__(self):
return "KNN(k=%d)" % self.k
测试使用:
knn_clf.score(X_test,y_test)
sklearn中的accuracy_score
代码:
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
#划分数据集
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
#训练knn模型
knn_classifier = KNeighborsClassifier(n_neighbors=6)
knn_classifier.fit(X_train,y_train)
#预测测试集
y_predict = knn_classifier.predict(X_test)
#计算准确率
from sklearn.metrics import accuracy_score
#方式1:
accuracy_score(y_test,y_predict)
#方式2:
knn_classifier.score(X_test,y_test)
【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)