邻接矩超详解(C/C++)

举报
莫浅子 发表于 2022/12/21 22:17:40 2022/12/21
【摘要】 ​ 提示:记得点赞,关注,收藏目录前言一、领接矩阵1.概念2.分类3.步骤4. 邻接矩阵的优缺点5.代码 前言图的结构比较复杂,任何两个顶点之间都可能有关系。如果采用顺序存储,则需要使用二维数组表示元素之间的关系,即邻接矩阵(Adjacency Matrix),也可以使用边集数组,把,每条边顺序存储起来。如果采用链式存储,则有邻接表.十字链表和邻接多重表等表示方法。其中,邻接矩阵和邻接表是最...

 提示:记得点赞,关注,收藏



前言

图的结构比较复杂,任何两个顶点之间都可能有关系。如果采用顺序存储,则需要使用二维数组表示元素之间的关系,即邻接矩阵(Adjacency Matrix),也可以使用边集数组,把,每条边顺序存储起来。如果采用链式存储,则有邻接表.十字链表和邻接多重表等表示方法。其中,邻接矩阵和邻接表是最简单、最常用的存储方法。。
 


提示:以下是本篇文章正文内容,本篇文章参考《算法训练营》

一、领接矩阵

1.概念

邻接矩阵通常采用一个一维数组存储图中节点的信息,采用一个二维数组存储图中节点之间的邻接关系。

2.分类

1. 邻接矩阵的表示方法

无向图、有向图和网的邻接矩阵的表示方法如下所述。

(1)无向图的邻接矩阵

在无向图中,若从节点vi  到节点vj  有边,则邻接矩阵 M  [i ][j ]= M  [j ][i ]=1,否则 M  [i ][j ]=0。

编辑

例如,一个无向图的节点信息和邻接矩阵如下图所示。在该无向图中,从节点a 到节点b 有边,从节点b 到节点a 也有边,节点a 、b 在一维数组中的存储位置分别为0、1,则 M  [0][1]= M  [1][0]=1。 

              编辑

无向图的邻接矩阵的特点如下。

(1)无向图的邻接矩阵是对称矩阵,并且是唯一的。

(2)第i 行或第i 列非零元素的个数正好是第i 个节点的度。上图中的邻接矩阵,第3列非零元素的个数为2,说明第3个节点c 的度为2。



(2)有向图的邻接矩阵 

在有向图中,若从节点vi  到节点vj  有边,则邻接矩阵 M  [i ][j ]=1,否则 M  [i ][j ]=0。

编辑


注意: 以尖括号<vi  ,vj  >表示的是有序对,以圆括号(vi  ,vj  )表示的是无序对,后同。


 例如,一个有向图的节点信息和邻接矩阵如下图所示。在该有向图中,从节点a 到节点b 有边,节点a 、b 在一维数组中的存储位置分别为0、1,因此 M  [0][1]=1。有向图中的边是有向边,从节点a 到节点b 有边,从节点b 到节点a 不一定有边,因此有向图的邻接矩阵不一定是对称的。

                编辑 


有向图的邻接矩阵的特点如下

(1)有向图的邻接矩阵不一定是对称的。

(2)第i 行非零元素的个数正好是第i 个节点的出度,第i 列非零元素的个数正好是第i 个节点的入度。上图中的邻接矩阵,第3行非零元素的个数为2,第3列非零元素的个数也为2,说明第3个节点c 的出度和入度均为2。


3)网的邻接矩阵

网是带权图,需要存储边的权值,则邻接矩阵表示为其中,wij  表编辑示边上的权值,∞表示无穷大。当i =j 时,wii  也可被设置为0。

例如,一个网的节点信息和邻接矩阵如下图所示。在该网中,从节点a 到节点b 有边,且该边的权值为2,节点a 、b 在一维数组中的存储位置分别为0、1,因此 M  [0][1]=2。从节点b 到节点a 没有边,因此 M  [1][0]=∞。 

   


        编辑

3.步骤

算法步骤: 

(1)输入节点数和边数;

(2)依次输入节点信息,将其存储到节点数组Vex[]中;

(3)初始化邻接矩阵,如果是图,则将其初始化为0;如果是网,则将其初始化为∞;

(4)依次输入每条边依附的两个节点,如果是网,则还需要输入该边的权值。

• 如果是无向图,则输入a b ,查询节点a、b 在节点数组Vex[]中的存储下标i 、j ,令Edge[i ][j ]=Edge[j ][i ]=1。

• 如果是有向图,则输入a b ,查询节点a、b 在节点数组Vex[]中的存储下标i 、j ,令Edge[i ][j ]=1。

• 如果是无向网,则输入a b w ,查询节点a、b 在节点数组Vex[]中的存储下标i 、j ,令Edge[i ][j ]=Edge[j ][i ]=w 。

• 如果是有向网,则输入a b w ,查询节点a、b 在节点数组Vex[]中的存储下标i 、j ,令Edge[i ][j ]=w 。


完美图解: 一个无向图如下图所示,其邻接矩阵的存储过程如下所述。

                  编辑

(1)输入节点数和边数。

4  5


结果:G .vexnum=4、G .edgenum=5。

(2)输入节点信息,将其存入节点信息数组。

a b c d

  编辑

 (3)初始化邻接矩阵的值均为0,如下图所示。

                  编辑


(4)依次输入每条边依附的两个节点。

  • 输入a b ,处理结果:在Vex[]数组中查找到节点a 、b 的下标分别为0、1,是无向图,因此令       Edge[0][1]=Edge[1][0]=1,如下图所示。

编辑

• 输入a d ,处理结果:在Vex[]数组中查找到节点a 、d 的下标分别为0、3,是无向图,因此令Edge[0][3]= Edge[3][0]=1,如下图所示。

编辑


• 输入b c ,处理结果:在Vex[]数组中查找到节点b 、c 的下标分别为1、2,是无向图,因此令Edge[1][2]= Edge[2][1]=1,如下图所示。

编辑


• 输入b d ,处理结果:在Vex[]数组中查找到节点b 、d 的下标分别为1、3,是无向图,因此令Edge[1][3]= Edge[3][1]=1,如下图所示。


编辑


• 输入c d ,处理结果:在Vex[]数组中查找到节点c 、d 的下标分别为2、3,是无向图,因此令Edge[2][3]= Edge[3][2]=1,如下图所示。

编辑

在实际应用中,也可以先输入节点信息并将其存入数组Vex[]。在输入边时直接输入节点的存储下标序号,这样可以节省查询节点下标所需的时间,从而提高效率。

4. 邻接矩阵的优缺点

(1)优点如下。

• 快速判断在两节点之间是否有边。在图中,Edge[i ][j ]=1,表示有边;Edge[i ][j ]=0,表示无边。在网中,Edge[i ][j ]=∞,表示无边,否则表示有边。时间复杂度为O (1)。

• 方便计算各节点的度。在无向图中,邻接矩阵第i 行元素之和就是节点i 的度;在有向图中,第i 行元素之和就是节点i 的出度,第i 列元素之和就是节点i 的入度。时间复杂度为O (n )。

(2)缺点如下。

• 不便于增删节点。增删节点时,需要改变邻接矩阵的大小,效率较低。

• 不便于访问所有邻接点。访问第i 个节点的所有邻接点时,需要访问第i 行的所有元素,时间复杂度为O (n )。访问所有节点的邻接点,时间复杂度为O (n 2 )。

• 空间复杂度高,为O (n 2 )。

在实际应用中,如果在一个程序中只用到一个图,就可以用一个二维数组表示邻接矩阵,直接输入节点的下标,省去节点信息查询步骤。有时如果图无变化,则为了方便,可以省去输入操作,直接在程序头部定义邻接矩阵。



5.代码 

领接矩阵存储结构创建

typedef char VexType;    //顶点数最大值
typedef int EdgeType;    //顶点的数据类型,根据需要定义
#define MaxVnum 100;     //边上权值的数据类型,若不带权值,则为0或1
typedef struct
{
     VexType Vex[MaxVnum];          //存储顶点信息
     EdgeType Edge[MaxVnum][MaxVnum];
     int vexnum,edgenum;            //顶点数,边数
} AMGragh;

无向图代码如下 

//邻接矩阵创建无向图
#include <iostream>
using namespace std;

#define MaxVnum 100  //顶点数最大值
typedef char VexType;  //顶点的数据类型,根据需要定义
typedef int EdgeType;  //边上权值的数据类型,若不带权值的图,则为0或1
typedef struct{
	VexType Vex[MaxVnum];
	EdgeType Edge[MaxVnum][MaxVnum];
	int vexnum,edgenum; //顶点数,边数
}AMGragh;

int locatevex(AMGragh G,VexType x)
{
    for(int i=0;i<G.vexnum;i++)//查找顶点信息的下标
       if(x==G.Vex[i])
        return i;
    return -1;//没找到
}


void CreateAMGraph(AMGragh &G)
{
    int i,j;
    VexType u,v;
    cout << "请输入顶点数:"<<endl;
    cin>>G.vexnum;                    //如果取的不是地址符号就要用G->vexnum 
    cout << "请输入边数:"<<endl;
    cin>>G.edgenum;
    cout << "请输入顶点信息:"<<endl;
    for(int i=0;i<G.vexnum;i++)//输入顶点信息,存入顶点信息数组
        cin>>G.Vex[i];
    for(int i=0;i<G.vexnum;i++)//初始化邻接矩阵所有值为0,如果是网,则初始化邻接矩阵为无穷大
      for(int j=0;j<G.vexnum;j++)
         G.Edge[i][j]=0;
    cout << "请输入每条边依附的两个顶点:"<<endl;
    while(G.edgenum--)
    {
       cin>>u>>v;
       i=locatevex(G,u);//查找顶点u的存储下标
       j=locatevex(G,v);//查找顶点v的存储下标
       if(i!=-1&&j!=-1)
         G.Edge[i][j]=G.Edge[j][i]=1; //邻接矩阵储置1
       else
       {
           cout << "输入顶点信息错!请重新输入!"<<endl;
           G.edgenum++;//本次输入不算
       }
    }
}

void print(AMGragh G)//输出邻接矩阵
{
    cout<<"图的邻接矩阵为:"<<endl;
    for(int i=0;i<G.vexnum;i++)
    {
        for(int j=0;j<G.vexnum;j++)
         cout<<G.Edge[i][j]<<"\t";
        cout<<endl;
    }
}


int main()
{
    AMGragh G;
    CreateAMGraph(G);
    print(G);
    return 0;
}







【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。