【IoT美学】物联网通信技术——5G

举报
Devin 发表于 2020/08/31 18:39:07 2020/08/31
【摘要】 5G,这个词,我想每个接触ICT行业的朋友都有听过,可5G的到来,对物联网行业的帮助究竟是什么?我相信,95%的ICT从业者对5G这一概念没有一个清晰的认知。这一期文章的主题主要是普及一些5G关键技术的介绍。如果你对这方面感兴趣,希望你在评论区留下我们的暗号:拯救小白!也希望你能get到属于自己的知识盲点!一、移动通信概述 1.移动通**展历程 1G 模拟制式语音业务NM...

5G,这个词,我想每个接触ICT行业的朋友都有听过,可5G的到来,对物联网行业的帮助究竟是什么?

我相信,95%的ICT从业者对5G这一概念没有一个清晰的认知。

这一期文章的主题主要是普及一些5G关键技术的介绍。

如果你对这方面感兴趣,希望你在评论区留下我们的暗号:拯救小白!

也希望你能get到属于自己的知识盲点!


一、移动通信概述

    1.移动通**展历程

        1G 模拟制式语音业务NMT TACS AMPS NAMTS

        2G 数字制式 语音业务 低速数据业务10kbps~200kbps GSM CDMA

        3G 移动多媒体业务 2Mbps~50Mbps  TD-SCDMA  WCDMA CDMA2000

        4G 移动宽带 100Mbps~1Gbps   TD-LTE FDD LTE

        5G 万物互联

    2.4G和5G的“野心”

        A.4G设计目标

            三高

                高峰值速率:下行峰值100Mbps,上行峰值50Mbps

                高频谱效率:频谱效率是3G的3~5倍

                高移动:支持350km/h(在某些频段甚至支持500km/h

            两低

                低时延:控制面IDLE-> ACTIVE:<100ms,用户面传输:<10ms

                低成本:SON(自组织网络),支持多频段灵活配置

            一架构

                以分组域业务为主要目标,系统在整体架构上是基于分组交换的扁平化架构

        B.5G设计目标

            聚焦多元化需求:eMBB+uRLLC+eMTC

                用户体验速率

                频谱效率

                移动性

                时延

                连接数密(设备/平方公里)

                网络功耗效率

                区域流量能力

                峰值速率

    3.实现“野心”的关键

            频谱资源

                频谱资源变化:更大带宽、更高利用率

                频谱资源: 4G  20MHz     5G 400MHz

                传输带宽: 4G保护带宽占比约10%频谱利用率约90%       5G 保护带宽占比2%~3% 频谱利用率约98%

            系统架构

                系统架构演进:传统网络至4G

                系统架构演进:5G NFV(网络设备功能虚拟化)

            关键技术

                4G      VS      5G

                双工方式:TDD/ FDD——灵活双工、全双工

                多址技术:OFDMA/SC-OFDMA——OFDMA/SC-FDMA/NOMA

                天线技术:传统MIMO——Massive MIMO

                调制方式:64QAM——1024QAM

    4.5G前景展望

            使能更多新兴垂直行业应用!

            案例 智能电网:监控和控制  故障自恢复  时延要求5~50ms  可靠性要求 非常高

            无人机:公共安全  农林  时延要求10~30ms 可靠性要求 高

            智能医疗:远程手术 时延要求10~100ms 可靠性要求  高

            智能制造:机器人通信与控制  时延要求 10~100ms  可靠性要求非常高

            ······

二、5G网络概述

    1.移动业务需求趋势及业务场景

        A.5G时代面临的挑战

            MBB数据流量雪崩式增长  移动互联网等新应用所带来的流量爆炸性增长  10年1000倍

            联网设备数量巨大增长  具备通信能力的机器   2020年有1000亿联网设备

            应用场景和需求的多样性  设备与设备之间的通信 比如车与车之间的通信   由于机器通信所带来新需求和新特性

         高速率=良好的用户体验

         流媒体VR视频的带宽需求

         物联网通信技术——5G

        B.不同制式所支持连接数

            3G每小区支持100个连接

            4G每小区支持1000个连接

            5G每平方公里支持1百万个连接

         有了5G,十字路口不再拥塞

         自动驾驶对低时延的需求

        C.5G的关键性能指标

            时延 1毫秒  端到端时延 30~50x

            吞吐量  10Gbps每个连接速率

            连接数  1000K每平方公里连接数

        D.5G法定名称“ IMT-2020 ”

            ITU对IMT2020愿景的描述

                eMBB(增强型MBB)10Gbit/s

                mMTC(海量连接的物联网业务)1百万连接每平方公里

                uRLLC (超高可靠性与超低时延业务)1ms

            NGMN对5G愿景的描述

                5G是一个端到端、全移动的、全连接的生态系统,提供全覆盖的一致性体验,提供可持续的商用模型,通过现有的和即将涌现的创新,为用户和合作伙伴创造价值

                增强的宽带接入eMBB

            虚拟现实VR 增强现实AR 3D全息

            大规模的物联网(mMTC)

                Huawei&ofo共享单车应用案例

                根据华为预计,到2017年底,全球将有30张NB-IoT商用网络

                智慧城市

                智慧T-mobile “智能暖气表”NB-IoT应用案例

            极致的实时通信

                触觉互联网

                自动化交通控制和驾驶

            5G关键的能力

            5G=平台

            5G网络新架构

                超高清分片

                语音分片

                实时业务分片

                IoT业务分片

                产业需求定义分片的QoS

                基站

                NFV(统一控制平面)+SDN(多业务的用户平面 )

                Telco-OS

                开发者

                消费者

                合作伙伴

                运营商

            5G对未来的定义

                5G=10Gbps + 1ms时延 +100万连接/每平方公里

    2.5G协议标准化及当前进展

            5G从3GPP Release15开始

                5G包括:新空口 LTE Advanced Pro演进

                下一代核心网NextGen Core

                EPC演进

            研究5G的主要国际标准组织

                ITU-R Visions Group

                EU

                Germany-5G  Lab Germany at TU Dresden

                UK-5G Innovation Centre(5GIC)at University of Surrey

                US

                    Intel Strategic Research Alliance (ISRA)

                China

                Japan

                Korea

            研究5G的主要国际非标准组织

                OTSA

                3GPP

    3.5G全球商用计划

        家庭宽带最后一公里接入

        车联网正在成为国家的战略关注点

        未来将持续探索新兴垂直行业应用

        今天的长尾将是明天的主体 如AR/MR(长尾效应)

三、5G网络关键技术

    1.增强覆盖技术

            5G网络频谱

                增加带宽是增加容量和传输速率最直接的方法,5G最大带宽将会达到1GHz,考虑到目前频率占用情况,5G将不得不使用高频进行通信

                    a.5G主频段 以3.5GHz为主

                    b.5G扩展频段毫米波 以28/39/60/73GHz

                高频通信的挑战

                    高频波长相比低频传播损耗更大、绕射能力更弱

                    频段越高,上下行覆盖差异越明显,上行覆盖受限

                    高频通信的解决方案-提高发射功率

                    高频通信的解决方案-上下行解耦 NR中基站下行使用高频段进行通信,上行可以视UE覆盖情况选择与LTE共享低频资源进行通信,从而实现NR上下行频段解耦 

                    UE基于覆盖情况选择合适的上行频点

                    IDLE态通过系统消息获取f1,f2相关信息,并根据实际测量进行选择

                    连接态通过测量报告上报,由基站通过信令指示

                    上下行解耦要求5G NR和LTE协同

                    上下行解耦站形

                    BBU5900

                        a.设备紧凑,连接简单

                        b.新建站点或改造eNB

                        c.适合有较多空闲槽位场景

                    槽位多,可扩展性好  需要两根光纤,成本高

                        a.BBU3910

                        b.BBU5900

                    槽位多,可扩展性好  增加框间基带板HEI接口,接口流量大

                        a.BBU3910

                        b.BBU5900

    2.提高效率技术

            A.NR频谱效率提升技术

                频谱效率即单位时间内每Hz中bit数的提升,5G中用的频谱效率提升方法包括:

                a.新波形技术、新多址技术

                    NR无线新波形(华为FOFDM)

                    Filtered-OFDM是一项基础波形技术,与OFDM最大的区别就是子载波带宽可以根据需求进行调整,以适应不同业务的需求

                    4G(OFDM):子载波带宽是固定的,15kHz      固定子载波间隔  10%保护带宽

                    5G(F-OFDM):子载波带宽是不固定的,可以灵活真的不同QoE应用的报文大小      灵活子载波间隔(方便空口做网络切片) 1个子载波的最小保护带宽

                b.NR上行新波形(CP-OFDM)

                    NR上行支持两种波形,CP-OFDM和DFT-S-OFDM,使用CP-OFDM时,基站可以不用为UE分配频域连续的子载波

                c.NR新多址技术(华为SCMA)

                    1G:FDMA

                    2G:TDMA+FDMA

                    3G:CDMA

                    4G:OFDMA

                    5G:SCMA  新型多址接入技术

                        通过使用扩频技术在4个子载波上承载6个用户的数据,提升频谱的使用效率

            B.新调制技术、新编码技术

                a.新调制技术(256QAM)

                    3GPP R12协议中新增了下行256QAM,相对于64QAM支持每符号携带8个bit位,支持更大的TBDS传输,理论峰值频谱效率提升33%。相同频谱效率下256QAM码率更低,解调可靠性更高

                b.NR新编码技术(Polar+LDPC)

                    LDPC Code(业务信道)

                        LTE Turbo

                        NR LDPC

                    Polar Code(控制信道)

                        Polar码高可靠的编码方式无误码平台从而减少重传,同时降低信噪比需求以提升覆盖

            C.灵活双工与全双工

                a.灵活双工技术

                    根据业务调整上下行子帧

                    相邻小区会进行干扰协调消除

                b.全双工技术

                    目前TDD/FDD制式是分别在不同的时间/频率资源上分别进行收发

                    全双工将指收发双方在同一时频资源进行数传

                    发送端和接收端同时收发,发送端把信息传递给接收端,接收端进行相关干扰消除运算,实现同时收发

            D.Massive MIMO

                水平的4流加BF   8T8RVS 64T64R

                立体16流更窄的波束+MU BF

            E.Massive MIMO增益(上行MU-MIMO)

                多用户虚拟MIMO

                    通过多个UE配对复用相同的上行时频资源,同时传输多流数据,从而提高小区的平均下行吞吐率

            F.Massive MIMO增益(3D BF)

                三维波束赋形简称3D BF,增强用户的覆盖

                    相对于传统波束只能在水平方向跟随目标UE调整方向,3D BF的窄波束在水平方向和垂直方向都能随着目标UE的位置进行调整

            G.Massive MIMO增益(MU BF)

                多用户虚拟BF

                    eNOdeB根据配对条件进行UE配对,实现在同一时频资源上传多个用户下行数据流,从而提高下行传输的频谱效率和提高小区吞吐量

            H.Massive MIMO的应用场景

                城区、高校流量高低(CBD等)

                高楼覆盖场景

                重大活动保障场景

    3.降低时延技术

            A.NR低时延保障技术分析

                a.RAN时延因素

                    空口传输   TTI长度决定

                    处理  HARQ  RTT决定

                    重传  TDD上行配比

                    无线信号  上、下行覆盖差   上、下行干扰

                b.方案 缩短TTI 

                    免去授权调度、灵活双工或者全双工

                    用户面下沉

                c.方案

                    优化无线覆盖

            B.NR时隙聚合调度

                Slot Aggregation:NR中调度周期可以灵活变的,且一次可以调度多个时隙,以适应不用业务需求,降低无线时延

            C.NR免授权调度

                免授权调度:由于调度存在RTT时延,NR中对于时延比较敏感的业务提出免调度的过程,终端有需求直接发送

            D.NR侵入式空口调度(EAI)Embed Air Interface

                eMBB和uRLLC业务共存时,EAI机制可以实现uRLLC业务对eMBB资源打孔,以保障uRLLC对时延的要求

    4.5G异步HARQ技术

            HARQ:混合自动重传请求

                5G上下行链路采用异步HARQ协议:重传在上一次传输之后的任何可用时间上进行,接收端需要被告知具体的进程号

    5.D2D 通信   (Device to Device)

            D2D通信,基站分配频谱用于终端与终端直接互联进行用户面数据传输,D2D关键技术包括:

                a.频谱分配模式

                    使用蜂窝小区的剩余资源

                    复用蜂窝小区下行资源

                    复用蜂窝小区上行资源

                b.干扰控制

                    适当的功率控制,能够在D2D复用蜂窝资源时,有效地协调D2D与蜂窝网络间的干扰

    总结


        提升覆盖技术:提高UE发射功率、上下行解耦     

        提升效率技术:新波形、新多址、新调制、新编码、新双工、CRS FREE、Massive MIMO          

        降低时延技术:时隙聚合调度、免调度、侵入式空口调度、异步HARQ、D2D技术



【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。