2020-08-30:裸写算法:二叉树两个节点的最近公共祖先。
【摘要】 福哥答案2020-08-30:1.递归算法左节点子函数返回值不空,右节点子函数返回值为空,返回左节点。左节点子函数返回值为空,右节点子函数返回值不空,返回右节点。左节点子函数返回值不空,右节点子函数返回值不空,返回当前节点。复杂度分析:时间复杂度 O(N) : 其中 N 为二叉树节点数;最差情况下,需要递归遍历树的所有节点。空间复杂度 O(N) : 最差情况下,递归深度达到 N ,系统使用 ...
福哥答案2020-08-30:
1.递归
算法
左节点子函数返回值不空,右节点子函数返回值为空,返回左节点。
左节点子函数返回值为空,右节点子函数返回值不空,返回右节点。
左节点子函数返回值不空,右节点子函数返回值不空,返回当前节点。
复杂度分析:
时间复杂度 O(N) : 其中 N 为二叉树节点数;最差情况下,需要递归遍历树的所有节点。
空间复杂度 O(N) : 最差情况下,递归深度达到 N ,系统使用 O(N) 大小的额外空间。
2.存储父节点
思路
我们可以用哈希表存储所有节点的父节点,然后我们就可以利用节点的父节点信息从 p 结点开始不断往上跳,并记录已经访问过的节点,再从 q 节点开始不断往上跳,如果碰到已经访问过的节点,那么这个节点就是我们要找的最近公共祖先。
算法
从根节点开始遍历整棵二叉树,用哈希表记录每个节点的父节点指针。
从 p 节点开始不断往它的祖先移动,并用数据结构记录已经访问过的祖先节点。
同样,我们再从 q 节点开始不断往它的祖先移动,如果有祖先已经被访问过,即意味着这是 p 和 q 的深度最深的公共祖先,即 LCA 节点。
复杂度分析
时间复杂度:O(N),其中 N 是二叉树的节点数。二叉树的所有节点有且只会被访问一次,从 p 和 q 节点往上跳经过的祖先节点个数不会超过 N,因此总的时间复杂度为 O(N)。
空间复杂度:O(N),其中 N 是二叉树的节点数。递归调用的栈深度取决于二叉树的高度,二叉树最坏情况下为一条链,此时高度为 N,因此空间复杂度为 O(N),哈希表存储每个节点的父节点也需要 O(N)的空间复杂度,因此最后总的空间复杂度为 O(N)。
3.迭代
思路
深度优先遍历,遍历到两个值,答案就出来了。
复杂度分析
时间复杂度 O(N) : 其中 N 为二叉树节点数;最差情况下,需要递归遍历树的所有节点。
空间复杂度 O(Level) : Level是树的最大深度。
代码用go语言编写,如下:
```go
package test35_lowestcommonancestor
import (
"fmt"
"testing"
)
//go test -v -test.run TestLowestCommonAncestor
func TestLowestCommonAncestor(t *testing.T) {
root := &TreeNode{}
root.Val = 3
root.Left = &TreeNode{}
root.Left.Val = 5
root.Right = &TreeNode{}
root.Right.Val = 1
root.Right.Left = &TreeNode{}
root.Right.Left.Val = 0
root.Right.Right = &TreeNode{}
root.Right.Right.Val = 8
root.Left.Left = &TreeNode{}
root.Left.Left.Val = 6
root.Left.Right = &TreeNode{}
root.Left.Right.Val = 2
root.Left.Right.Left = &TreeNode{}
root.Left.Right.Left.Val = 7
root.Left.Right.Right = &TreeNode{}
root.Left.Right.Right.Val = 4
p := root.Right.Right
q := root.Left.Right.Right
fmt.Println("p = ", p)
fmt.Println("q = ", q)
ret := LowestCommonAncestor1(root, p, q)
fmt.Println("递归ret = ", ret)
ret = LowestCommonAncestor2(root, p, q)
fmt.Println("存储父节点ret = ", ret)
ret = LowestCommonAncestor3(root, p, q)
fmt.Println("迭代ret = ", ret)
}
//Definition for a binary tree node.
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
//递归
func LowestCommonAncestor1(root, p, q *TreeNode) *TreeNode {
if root == nil || root == p || root == q {
return root
}
left := LowestCommonAncestor1(root.Left, p, q)
right := LowestCommonAncestor1(root.Right, p, q)
if left == nil && right == nil { //root是叶子节点
return nil
}
//左节点搜索不到了,说明右节点是根节点
if left == nil {
return right
}
//右节点搜索不到了,说明左节点是根节点
if right == nil {
return left
}
//左右都有,说明root就是根节点
return root
}
//存储父节点
func LowestCommonAncestor2(root, p, q *TreeNode) *TreeNode {
parent := map[int]*TreeNode{}
visited := map[int]bool{}
var dfs func(*TreeNode)
dfs = func(r *TreeNode) {
if r == nil {
return
}
if r.Left != nil {
parent[r.Left.Val] = r
dfs(r.Left)
}
if r.Right != nil {
parent[r.Right.Val] = r
dfs(r.Right)
}
}
dfs(root)
for p != nil {
visited[p.Val] = true
p = parent[p.Val]
}
for q != nil {
if visited[q.Val] {
return q
}
q = parent[q.Val]
}
return nil
}
//迭代
func LowestCommonAncestor3(root, p, q *TreeNode) *TreeNode {
if root == nil || root == p || root == q {
return root
}
//push根
stack := make([]*TreeNode, 0)
stack = append(stack, root)
stackvisited := make([]int, 0) //记录stack的访问状态
stackvisited = append(stackvisited, 0) //0未访问 1左节点已经访问 2右节点已访问
var cur *TreeNode = nil
var ret *TreeNode = nil
for len(stack) > 0 {
cur = nil
if stackvisited[len(stackvisited)-1] == 0 { //未访问
stackvisited[len(stackvisited)-1] = 1
if stack[len(stack)-1].Left != nil {
stack = append(stack, stack[len(stack)-1].Left)
stackvisited = append(stackvisited, 0)
cur = stack[len(stack)-1]
}
} else if stackvisited[len(stackvisited)-1] == 1 { //左节点已访问
stackvisited[len(stackvisited)-1] = 2
if stack[len(stack)-1].Right != nil {
stack = append(stack, stack[len(stack)-1].Right)
stackvisited = append(stackvisited, 0)
cur = stack[len(stack)-1]
}
} else { //右节点已访问
if ret != nil {
if stack[len(stack)-1] == ret {
ret = stack[len(stack)-2]
}
}
//pop
stack = stack[0 : len(stack)-1]
stackvisited = stackvisited[0 : len(stackvisited)-1]
}
if cur != nil {
if cur == p {
if ret != nil { //第二次
break
} else { //第一次
ret = cur
}
}
if cur == q {
if ret != nil { //第二次
break
} else { //第一次
ret = cur
}
}
}
}
return ret
}
```
敲 go test -v -test.run TestLowestCommonAncestor 命令,执行结果如下:
【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
作者其他文章
- 2025-03-10:将 1 移动到末尾的最大操作次数。用go语言,给定一个二进制字符串 s,你可以进行以下操作:选择字符串中任
- 2025-03-07:网格图操作后的最大分数。给定一个 n x n 的二维矩阵 grid,初始时所有格子均为白色。你可以进行操作
- 2025-03-06:给定一个长度为 n 的整数组 nums,其中 n 是偶数,同时还有一个整数 k。 你可以进行一些操作,每次
- 绝了!k3s (k8s) 安装 ollama 运行 deepseek 全流程揭秘,yaml全公开
- 2025-03-04:求出硬币游戏的赢家。用go语言,给定两个正整数 x 和 y,分别代表75元和10元硬币的数量。 Alice
评论(0)