Python 协程的引入
引子
之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来说我们已经算是把cpu的利用率提高很多了。但是我们知道无论是创建多进程还是创建多线程来解决问题,都要消耗一定的时间来创建进程、创建线程、以及管理他们之间的切换。
随着我们对于效率的追求不断提高,基于单线程来实现并发又成为一个新的课题,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发。这样就可以节省创建线进程所消耗的时间。
为此我们需要先回顾下并发的本质:切换+保存状态
cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长
ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态
一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。
为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:
#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级 #2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换
单纯地切换反而会降低运行效率:
#串行执行 import time def consumer(res): '''任务1:接收数据,处理数据''' pass def producer(): '''任务2:生产数据''' res=[] for i in range(10000000): res.append(i) return res start=time.time() #串行执行 res=producer() consumer(res) #写成consumer(producer())会降低执行效率 stop=time.time() print(stop-start) #1.5536692142486572 #基于yield并发执行 import time def consumer(): '''任务1:接收数据,处理数据''' while True: x=yield def producer(): '''任务2:生产数据''' g=consumer() next(g) for i in range(10000000): g.send(i) start=time.time() #基于yield保存状态,实现两个任务直接来回切换,即并发的效果 #PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的. producer() stop=time.time() print(stop-start) #2.0272178649902344
二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。
yield 无法做到遇到io阻塞:
import time def consumer(): '''任务1:接收数据,处理数据''' while True: x=yield def producer(): '''任务2:生产数据''' g=consumer() next(g) for i in range(10000000): g.send(i) time.sleep(2) start=time.time() producer() #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行 stop=time.time() print(stop-start)
对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。
协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:
#1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。 #2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换
- 点赞
- 收藏
- 关注作者
评论(0)