基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图

举报
软件算法开发 发表于 2024/11/11 19:40:41 2024/11/11
【摘要】 1.程序功能描述        车间作业调度问题(Job Shop Scheduling Problem, JSSP)是一种典型的生产调度问题,旨在确定一系列作业在多个并行工作中心上的加工顺序和起止时间,以最小化总完成时间、最大完工时间、机器闲置时间等目标。2.测试软件版本以及运行结果展示MATLAB2022a版本运行3.核心程序 % 交叉操作 Pop0{j2}=fu...

1.程序功能描述
        车间作业调度问题(Job Shop Scheduling Problem, JSSP)是一种典型的生产调度问题,旨在确定一系列作业在多个并行工作中心上的加工顺序和起止时间,以最小化总完成时间、最大完工时间、机器闲置时间等目标。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg

2.jpeg

3.jpeg

4.jpeg

3.核心程序

       % 交叉操作
       Pop0{j2}=func_cross(Bestp{j2},Pop0{j2},l2,l1);
       Pop0{j2}=func_cross(bestparticle1,Pop0{j2},l4,l3); 
   end 
   Fitjob=[Fitjob,minval];
 
 
   if jj == 1
      [x1,x2,x3]=func_decode2(bestparticle,Mjob,Mt,Nmach);
      disp('迭代1次时,最小流动时间,最大完工时间,最小间隙时间')
      [x1,x2,x3]
      figure
      func_gant(bestparticle,Pop0Long,Mjob,Mt,x2);
      title('迭代1次时甘特图');
   end
   if jj == 10
      [x1,x2,x3]=func_decode2(bestparticle,Mjob,Mt,Nmach);
      disp('迭代10次时,最小流动时间,最大完工时间,最小间隙时间')
      [x1,x2,x3]
      figure
      func_gant(bestparticle,Pop0Long,Mjob,Mt,x2);
      title('迭代10次时甘特图');
   end
   if jj == 500
      [x1,x2,x3]=func_decode2(bestparticle,Mjob,Mt,Nmach);
      disp('迭代500次时,最小流动时间,最大完工时间,最小间隙时间')
      [x1,x2,x3]
      figure
      func_gant(bestparticle,Pop0Long,Mjob,Mt,x2);
      title('迭代500次时甘特图');
   end
end
 
 
figure;
plot(Fitjob);
xlabel('迭代次数');
ylabel('适应度收敛曲线');
39

4.本算法原理
4.1遗传算法与模拟退火算法简介
        遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传机制的全局搜索算法。其主要组成部分包括:

编码(Encoding):将作业调度问题转化为基因型表示,如作业列表、工序顺序、工作中心分配等信息。

种群初始化(Population Initialization):创建一个包含多个个体(作业调度方案)的初始种群。

适应度评估(Fitness Evaluation):根据优化目标(如总完成时间)计算每个个体的适应度值。

遗传操作(Genetic Operators):包括选择、交叉(Crossover)、变异(Mutation),用于生成下一代种群。

终止条件(Termination Criteria):设定最大迭代次数、收敛阈值等,决定算法何时停止。

       模拟退火算法(Simulated Annealing, SA)模拟固体材料在冷却过程中的退火现象,实现概率性接受非改进解以跳出局部最优。其主要步骤包括:

状态转移(State Transition):基于当前解生成一个邻域解。

接受概率(Acceptance Probability):

温度更新(Temperature Update):随着迭代过程,逐步降低温度T,遵循降温策略如指数降温:

Tt+1​=αTt​

其中,α是冷却系数,通常取值在(0 < α<1)之间。

4.2 GSAHO算法应用于JSSP
编码:采用作业列表表示法(Job-List Representation),每个个体由n个子串组成,每个子串代表一个作业,子串内部按照工序顺序排列。例如,I = [i_1, i_2, ..., i_n],其中i_j = [o_{j1}, o_{j2}, ..., o_{jm_j}],o_{jk}表示作业j的第k道工序在工作中心上的起始时间。

适应度函数:根据优化目标定义适应度函数。以最小化最大完工时间(Makespan)为例,适应度函数为:

5.png

其中,C_{max}为最大完工时间,p_{jk}为作业j的第k道工序的加工时间,t_{jk}为其等待时间(由调度决定)。

遗传操作:采用轮盘赌选择、部分匹配交叉(PMX)和单点变异等遗传算子。

模拟退火:在遗传算法的基础上,引入模拟退火过程,每次迭代后以一定的接受概率接受非改进解,以增加种群的多样性并避免早熟收敛。

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。