Python排序算法[二]:测试数据的迷雾散去
在上一篇文章《Python 排序算法[一]:令你茅塞顿开,却又匪夷所思》中我们学习了排序算法中比较费时间的三种:冒泡排序、选择排序、插入排序。并且在测试过程中发现了匪夷所思的问题,但是这都难不倒诸位 Coder。回顾一下上次测试的结果(3 万零 1 的数据排序):
冒泡排序 - 41 选择排序(两层 for) - 47 选择排序(max mix) - 14 插入排序 - 0.007398 复制代码
相对而言,冒泡排序和选择排序连插入排序的尾灯都看不到。
当即就有读者提出了看法:
大家都认为造成插入排序速度与其他两种排序速度巨大差异的原因是数据量和规律的值(当时的值非常规律,data=[i for i in range(3000)])。
所以这一次我将使用随机值来再次测试,看一看排序速度是否跟排序值的规律程度有关:
随机值
这一次的测试数据与上一次的不同,上一次确实是太规律了,所以这一次采用随机值:
from random import randint data = [randint(6, 20000) for i in range(30000)] data.insert(500, 5) data.insert(700, 7) data.insert(900, 9) 复制代码
并且还在生成的随机值列表中不同位置插入 3 个值,有了不规律的随机值,接下来就可以开始测试了。
冒泡排序
def bubble(data): for i in range(len(data)-1): # 排序次数 for s in range(len(data)-i-1): # s为列表下标 if data[s] > data[s+1]: data[s], data[s+1] = data[s+1], data[s] return data start_time = datetime.now() res = bubble(data) print(datetime.now() - start_time) print(len(res), res[:5], res[700:705], res[10000:10005]) 复制代码
得到的输出结果为:
0:01:20.273247 30003 [5, 6, 7, 7, 7] [492, 492, 492, 493, 495] [6665, 6665, 6666, 6668, 6668] 复制代码
80 秒!冒泡排序的测试结果证明,随机元素的列表排序比规律元素的列表排序费时更久。
选择排序(两层 for)
def selections(nums): for i in range(len(nums)): min_index = min(nums) # 最小值 for j in range(len(nums) - i): if nums[min_index] < nums[j]: min_index = j nums[min_index], nums[len(nums) - i - 1] = nums[len(nums) - i - 1], nums[min_index] return nums start_time = datetime.now() res = selections(data) print(datetime.now() - start_time) print(len(res), res[:5], res[700:705], res[10000:10005]) 复制代码
得到的结果为:
0:01:07.171114 30003 [6, 6, 7, 7, 8] [444, 445, 445, 446, 447] [6652, 6654, 6654, 6654, 6654] 复制代码
本次耗时 67 秒,而之前使用规律的值排序时耗时约 47 秒。选择排序(两层 for)的测试结果同样证明了随机元素的列表排序比规律元素的列表排序费时更久。
选择排序(min max)
start_time = datetime.now() res = [] for i in range(0, len(data)): aps = min(data) data.remove(aps) res.append(aps) print(datetime.now() - start_time) print(len(res), res[:5], res[700:705], res[10000:10005]) 复制代码
运行后得到的输出结果为:
0:00:10.102158 30003 [5, 6, 6, 7, 7] [443, 443, 443, 444, 444] [6645, 6646, 6649, 6650, 6650] 复制代码
这一次耗时 10 秒,甚至比之前规律元素排序耗费的 14 秒更省时间。
插入排序
def direct_insert(nums): # 崔庆才丨静觅、韦世东丨奎因 邀请你关注微信公众号【进击的Coder】 for i in range(1, len(nums)): temp = nums[i] # temp变量指向尚未排好序元素(从第二个开始) j = i-1 # j指向前一个元素的下标 while j >= 0 and temp < nums[j]: # temp与前一个元素比较,若temp较小则前一元素后移,j自减,继续比较 nums[j+1] = nums[j] j = j-1 nums[j+1] = temp # temp所指向元素的最终位置 return nums start_time = datetime.now() res = direct_insert(data) print(datetime.now() - start_time) print(len(res), res[:5], res[700:705], res[10000:10005]) 复制代码
运行后得到的输出结果为:
0:00:57.681174 30003 [5, 6, 6, 7, 7] [455, 456, 459, 459, 460] [6647, 6649, 6649, 6649, 6649] 复制代码
这一次插入排序的速度再不是快的离谱了,在猜想范围之内。
迷雾散去
相比上一次使用非常规律的 [ i for i in range(3000)],这一次使用 randint 生成的列表肯定是非常不规律的:
print(data[:20]) 复制代码
打印列表前 20 的元素,得到结果为:
[13698, 19871, 8468, 8735, 3473, 510, 788, 5070, 14585, 13324, 11743, 4310, 16460, 7102, 1900, 16608, 12342, 9724, 1482, 19609] 复制代码
这些元素的值有百位、千位、万位,证明了它们确是是不规律的。
多次测试得到的结果都相差无几,在以上几种排序的测试中,3 万左右的数据量排序最快的是选择排序(min max),它的排序速度保持在 10 秒内。
那么,选择排序的时间复杂度还是 O(n*n) 么?
为什么同样是找到最大(小)值,使用 max/min + pop 的速度会快很多,真的是因为 pop 后,n 就变成了 k,复杂度变成了 O(n+k) 了呢???
这一次的实验,告诉我们在测试中应该采用随机值的列表,而不是像上一次那样使用非常规律的 [i for i in range(3000)]
作者:夜幕韦世东
链接:https://juejin.im/post/5c20352fe51d45242974245f
来源:掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
转载声明:
原文链接:
https://juejin.im/post/5c20352fe51d45242974245f
- 点赞
- 收藏
- 关注作者
评论(0)