如何合理地估算线程池大小?

举报
Tracy 发表于 2019/11/04 15:07:47 2019/11/04
【摘要】 来源:蒋小强 ,ifeve.com/how-to-calculate-threadpool-size/如何合理地估算线程池大小?这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,...

来源:蒋小强 ,

ifeve.com/how-to-calculate-threadpool-size/


如何合理地估算线程池大小?


这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:


如何设计线程池大小,使得可以在1s内处理完20个Transaction?


计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。


很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。


再来第二种简单的但不知是否可行的方法(N为CPU总核数):


  • 如果是CPU密集型应用,则线程池大小设置为N+1

  • 如果是IO密集型应用,则线程池大小设置为2N+1


如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。


接下来在这个文档:服务器性能IO优化 中发现一个估算公式:


最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目


比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:


最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目


可以得出一个结论:


线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。


上一种估算方法也和这个结论相合。


一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:


  • 尽量提高短板操作的并行化比率,比如多线程下载技术

  • 增强短板能力,比如用NIO替代IO


第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:


加速比=优化前系统耗时 / 优化后系统耗时


加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:


Speedup <= 1 / (F + (1-F)/N)


当N足够大时,串行化比率F越小,加速比Speedup越大。


写到这里,我突然冒出一个问题。


是否使用线程池就一定比使用单线程高效呢?


答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:


  • 多线程带来线程上下文切换开销,单线程就没有这种开销


当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。


所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。


最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:


package pool_size_calculate;


import java.math.BigDecimal;

import java.math.RoundingMode;

import java.util.Timer;

import java.util.TimerTask;

import java.util.concurrent.BlockingQueue;


/**

 * A class that calculates the optimal thread pool boundaries. It takes the

 * desired target utilization and the desired work queue memory consumption as

 * input and retuns thread count and work queue capacity.

 *

 * @author Niklas Schlimm

 *

 */

public abstract class PoolSizeCalculator {


/**

 * The sample queue size to calculate the size of a single {@link Runnable}

 * element.

 */

private final int SAMPLE_QUEUE_SIZE = 1000;


/**

 * Accuracy of test run. It must finish within 20ms of the testTime

 * otherwise we retry the test. This could be configurable.

 */

private final int EPSYLON = 20;


/**

 * Control variable for the CPU time investigation.

 */

private volatile boolean expired;


/**

 * Time (millis) of the test run in the CPU time calculation.

 */

private final long testtime = 3000;


/**

 * Calculates the boundaries of a thread pool for a given {@link Runnable}.

 *

 * @param targetUtilization

 *            the desired utilization of the CPUs (0 <= targetUtilization <=   *            1)   * @param targetQueueSizeBytes   *            the desired maximum work queue size of the thread pool (bytes)   */ protected void calculateBoundaries(BigDecimal targetUtilization,  BigDecimal targetQueueSizeBytes) {  calculateOptimalCapacity(targetQueueSizeBytes);  Runnable task = creatTask();  start(task);  start(task); // warm up phase  long cputime = getCurrentThreadCPUTime();  start(task); // test intervall  cputime = getCurrentThreadCPUTime() - cputime;  long waittime = (testtime * 1000000) - cputime; calculateOptimalThreadCount(cputime, waittime, targetUtilization);  private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {  long mem = calculateMemoryUsage();  BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(  mem), RoundingMode.HALF_UP);  System.out.println("Target queue memory usage (bytes): "  + targetQueueSizeBytes);  System.out.println("createTask() produced "  + creatTask().getClass().getName() + " which took " + mem  + " bytes in a queue");  System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); System.out.println("* Recommended queue capacity (bytes): "  + queueCapacity);  /**   * Brian Goetz' optimal thread count formula, see 'Java Concurrency in   * Practice' (chapter 8.2)   *    * @param cpu   *            cpu time consumed by considered task   * @param wait   *            wait time of considered task   * @param targetUtilization   *            target utilization of the system   */  private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) {  BigDecimal waitTime = new BigDecimal(wait); BigDecimal computeTime = new BigDecimal(cpu);  BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()  .availableProcessors());  BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)  .multiply( new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP)));  System.out.println("Number of CPU: " + numberOfCPU);  System.out.println("Target utilization: " + targetUtilization); System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); System.out.println("Compute time (nanos): " + cpu);  System.out.println("Wait time (nanos): " + wait);  System.out.println("Formula: " + numberOfCPU + " * "  + targetUtilization + " * (1 + " + waitTime + " / "  + computeTime + ")"); System.out.println("* Optimal thread count: " + optimalthreadcount);  /**   * Runs the {@link Runnable} over a period defined in {@link #testtime}.   * Based on Heinz Kabbutz' ideas   * (http://www.javaspecialists.eu/archive/Issue124.html).   *    * @param task   *            the runnable under investigation   */  public void start(Runnable task) {  long start = 0;  int runs = 0; do {  if (++runs > 5) {

throw new IllegalStateException("Test not accurate");

}

expired = false;

start = System.currentTimeMillis();

Timer timer = new Timer();

timer.schedule(new TimerTask() {

public void run() {

expired = true;

}

}, testtime);

while (!expired) {

task.run();

}

start = System.currentTimeMillis() - start;

timer.cancel();

} while (Math.abs(start - testtime) > EPSYLON);

collectGarbage(3);

}


private void collectGarbage(int times) {

for (int i = 0; i < times; i++) {

System.gc();

try {

Thread.sleep(10);

} catch (InterruptedException e) {

Thread.currentThread().interrupt();

break;

}

}

}


/**

 * Calculates the memory usage of a single element in a work queue. Based on

 * Heinz Kabbutz' ideas

 * (http://www.javaspecialists.eu/archive/Issue029.html).

 *

 * @return memory usage of a single {@link Runnable} element in the thread

 *         pools work queue

 */

public long calculateMemoryUsage() {

BlockingQueue queue = createWorkQueue();

for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {

queue.add(creatTask());

}

long mem0 = Runtime.getRuntime().totalMemory()

- Runtime.getRuntime().freeMemory();

long mem1 = Runtime.getRuntime().totalMemory()

- Runtime.getRuntime().freeMemory();

queue = null;

collectGarbage(15);

mem0 = Runtime.getRuntime().totalMemory()

- Runtime.getRuntime().freeMemory();

queue = createWorkQueue();

for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {

queue.add(creatTask());

}

collectGarbage(15);

mem1 = Runtime.getRuntime().totalMemory()

- Runtime.getRuntime().freeMemory();

return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;

}


/**

 * Create your runnable task here.

 *

 * @return an instance of your runnable task under investigation

 */

protected abstract Runnable creatTask();


/**

 * Return an instance of the queue used in the thread pool.

 *

 * @return queue instance

 */

protected abstract BlockingQueue createWorkQueue();


/**

 * Calculate current cpu time. Various frameworks may be used here,

 * depending on the operating system in use. (e.g.

 * http://www.hyperic.com/products/sigar). The more accurate the CPU time

 * measurement, the more accurate the results for thread count boundaries.

 *

 * @return current cpu time of current thread

 */

protected abstract long getCurrentThreadCPUTime();


}


然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:


package pool_size_calculate;


import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.lang.management.ManagementFactory;

import java.math.BigDecimal;

import java.net.HttpURLConnection;

import java.net.URL;

import java.util.concurrent.BlockingQueue;

import java.util.concurrent.LinkedBlockingQueue;


public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {


@Override

protected Runnable creatTask() {

return new AsyncIOTask();

}


@Override

protected BlockingQueue createWorkQueue() {

return new LinkedBlockingQueue(1000);

}


@Override

protected long getCurrentThreadCPUTime() {

return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();

}


public static void main(String[] args) {

PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();

poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));

}


}


/**

 * 自定义的异步IO任务

 * @author Will

 *

 */

class AsyncIOTask implements Runnable {


@Override

public void run() {

HttpURLConnection connection = null;

BufferedReader reader = null;

try {

String getURL = "http://baidu.com";

URL getUrl = new URL(getURL);


connection = (HttpURLConnection) getUrl.openConnection();

connection.connect();

reader = new BufferedReader(new InputStreamReader(

connection.getInputStream()));


String line;

while ((line = reader.readLine()) != null) {

// empty loop

}

}


catch (IOException e) {


} finally {

if(reader != null) {

try {

reader.close();

}

catch(Exception e) {


}

}

connection.disconnect();

}


}


}


得到的输出如下:


Target queue memory usage (bytes): 100000

createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue

Formula: 100000 / 40

* Recommended queue capacity (bytes): 2500

Number of CPU: 4

Target utilization: 1

Elapsed time (nanos): 3000000000

Compute time (nanos): 47181000

Wait time (nanos): 2952819000

Formula: 4 * 1 * (1 + 2952819000 / 47181000)

* Optimal thread count: 256


推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:


ThreadPoolExecutor pool =

 new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));




-更多文章-


大数据就业前景,分析的太到位了!

当CPU飙高时,它在做什么

阿里分布式事务框架GTS开源了!

SpringCloud随笔:记录在使用OAuth2遇到的巨坑


-关注我-

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1


转载声明:本文转载自公众号【方志朋】。

原文链接:

https://mp.weixin.qq.com/s?__biz=MzAxNjk4ODE4OQ==&mid=2247484967&idx=1&sn=4417f52860f457b9c0a971ab4f38d477&chksm=9bed2755ac9aae4336876361f99066f3a7b363bdb377df372f14c35e744707e56f83132c846b&scene=21#wechat_redirect

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。