支付宝客户端架构解析:Android 客户端启动速度优化之「垃圾回收」
前言
《支付宝客户端架构解析》系列将从支付宝客户端的架构设计方案入手,细分拆解客户端在“容器化框架设计”、“网络优化”、“性能启动优化”、“自动化日志收集”、“RPC 组件设计”、“移动应用监控、诊断、定位”等具体实现,带领大家进一步了解支付宝在客户端架构上的迭代与优化历程。
本节将介绍支付宝 Android 客户端启动速度优化下的「垃圾回收」具体思路。
应用启动时间是移动 App 一个重要的用户体验环节,相对于普通的移动 App,支付宝过于庞大,必然会影响启动速度,一些常规的优化手段在支付宝中已经做得比较完善了,本篇文章尝试从 GC 的层面来进一步优化支付宝的启动速度。
背景
相对于 C 语言来说,Java 语言有一些特性,例如开发人员不用考虑内存的分配和回收,然而,进程内存管理又是必不可少的环节,妥协的结果是 Java 语言的设计者们把对象分配和回收放到了 Java虚拟机,这里希望明确一个概念:GC 是有代价的,这个代价包括:阻塞 Java 程序的执行,占用 CPU 资源,占用额外内存等,谷歌的工程师意识到了 GC 对应用的影响,所以把 GC 的日志默认输出到了 Logcat,我们经常能够看到 Logcat 里输出以下几种 GC 日志:
设计思路
支付宝是 Android 系统的一个应用程序,如何能够通过影响 Dalvik 的 GC 行为来缩短启动时间呢?这个问题可以分解为两步:
支付宝是否能影响自身 Dalvik 的行为
如何改进 Dalvik,缩短启动时间
第一个问题答案是肯定的,Android 系统的设计思路是每个 Android 应用程序都有独立的 Dalvik 实例,应用启动后可以修改自己的进程空间里的代码和数据,因此支付宝通过修改内存中的 Dalvik 库文件 libdvm.so 影响 Dalvik 的行为。
第二个问题的难点在于投入产出比:修改进程空间的代码和数据是面向二进制,难度远远大于源代码,也就是说稍微复杂的 Dalvik 改进工作是不可能的。
基于以上两点,提出了一种设想:启动时 GC 抑制,允许堆一直增长,直到开发人员主动停止 GC 抑制或者 OOM 停止 GC 抑制,这是一种"空间换时间"策略,用更多的内存消耗来换取启动时间的缩短,这种策略可行有两个前提:一是设备厂商没有加密内存中的 Dalvik 库文件,二是设备厂商没有改动 Google 的 Dalvik 源码(或者少量的改动),理论上通过白名单的方式可以覆盖所有设备,但是实现和维护成本都非常高。
GC 抑制的实现
取消 softlimit 检测
取消 GC 线程的唤醒
取消 GC 例程函数
OOM 停止 GC 抑制的实现
1. 取消 softlimit 检测:
2. 取消GC线程的唤醒
3. 取消GC例程函数
4. OOM 停止GC抑制的实现
效果
上图的启动时间的数据是在内部的 Android 4.x 测试设备上获得的(没有标注 release 表示 debug 版本)。从图表上来看,支付宝客户端的启动时间缩短了 15%~30%。
小结
通过本节内容,我们初步了解了支付宝在 Android 客户端启动性能优化下的「垃圾回收」机制和具体实践,由于篇幅限制,很多技术要点我们无法一一展开。而相应的技术内核,我们同样应用在了 mPaaS 并对外输出,欢迎大家上手体验:
https://tech.antfin.com/docs/2/49549
关于 Android 端启动性能优化的设计思路和具体实践,同样期待你们的反馈,欢迎一起探讨交流。
本文转载自异步社区。
原文链接:https://www.epubit.com/articleDetails?id=Nabc96883-30bb-4886-a5bb-a65252279e42
- 点赞
- 收藏
- 关注作者
评论(0)