简洁方便的集合处理——Java 8 stream流
背景
java 8已经发行好几年了,前段时间java 12也已经问世,但平时的工作中,很多项目的环境还停留在java1.7中。而且java8的很多新特性都是革命性的,比如各种集合的优化、lambda表达式等,所以我们还是要去了解java8的魅力。
今天我们来学习java8的Stream,并不需要理论基础,直接可以上手去用。
我接触stream的原因,是我要搞一个用户收入消费的数据分析。起初的统计筛选分组都是打算用sql语言直接从mysql里得到结果来展现的。但在操作中我们发现这样频繁地访问数据库,性能会受到很大的影响,分析速度会很慢。所以我们希望能通过访问一次数据库就拿到所有数据,然后放到内存中去进行数据分析统计过滤。
接着,我看了stream的API,发现这就是我想要的。
一、Stream理解
在java中我们称Stream为『流』,我们经常会用流去对集合进行一些流水线的操作。stream就像工厂一样,只需要把集合、命令还有一些参数灌输到流水线中去,就可以加工成得出想要的结果。这样的流水线能大大简洁代码,减少操作。
二、Stream流程
Stream流的操作流程一般都是这样的,先将集合转为流,然后经过各种操作,比如过滤、筛选、分组、计算。最后的终端操作,就是转化成我们想要的数据,这个数据的形式一般还是集合,有时也会按照需求输出count计数。下文会一一举例。
三、API功能举例
首先,定义一个用户对象,包含姓名、年龄、性别和籍贯四个成员变量:
这里用lombok简化了实体类的代码。
然后创建需要的集合数据,也就是源数据:
3.1 过滤
1)创建流 stream() / parallelStream()
stream() : 串行流
parallelStream(): 并行流
2)filter 过滤(T-> boolean)
比如要过滤年龄在40岁以上的用户,就可以这样写:
filter里面,->箭头后面跟着的是一个boolean值,可以写任何的过滤条件,就相当于sql中where后面的东西,换句话说,能用sql实现的功能这里都可以实现
打印结果:
3)distinct 去重
和sql中的distinct关键字很相似。为了看到效果,此处在原集合中加入一个重复的人,就选择钢铁侠吧,复联4钢铁侠不幸遇害,大家还是比较伤心的。
打印结果:
4)sorted排序
如果流中的元素的类实现了 Comparable 接口,即有自己的排序规则,那么可以直接调用 sorted() 方法对元素进行排序,如:
打印结果:
结果按照年龄从小到大进行排序。
5)limit() 返回前n个元素
如果想知道这里面年龄最小的是谁,可作如下操作:
6)skip()
与limit恰恰相反,skip的意思是跳过,也就是去除前n个元素。
打印结果:
果然,前两个人都被去除了,只剩下最老的葫芦娃爷爷。
3.2 映射
1)map(T->R)
map是将T类型的数据转为R类型的数据,比如我们想要设置一个新的list,存储用户所有的城市信息。
打印结果:
2)flatMap(T -> Stream )
将流中的每一个元素 T 映射为一个流,再把每一个流连接成为一个流。
打印结果:
这里原集合中的数据由逗号分割,使用split进行拆分后,得到的是Stream ,字符串数组组成的流,要使用flatMap的
Arrays::stream
将Stream 转为Stream ,然后把流相连接,组成了完整的唱、跳、rap、篮球和music。
3.3 查找
1)allMatch(T->boolean)
检测是否全部满足参数行为,假如这些用户是网吧上网的用户名单,那就需要检查是不是每个人都年满18周岁了。
2)anyMatch(T->boolean)
检测是否有任意元素满足给定的条件,比如,想知道同学名单里是否有女生。
说明集合中有女生存在。
3)noneMatch(T -> boolean)
流中是否有元素匹配给定的 T -> boolean 条件。
比如检测有没有来自巴黎的用户。
打印true说明没有巴黎的用户。
4)findFirst( ):找到第一个元素
3.4 归纳计算
1)求用户的总人数
运行结果:
3)求年龄总和是多少
运行结果:
6)字符串拼接
要将用户的姓名连成一个字符串并用逗号分割。
3.5 分组
在数据库操作中,我们经常通过GROUP BY关键字对查询到的数据进行分组,java8的流式处理也提供了分组的功能。使用Collectors.groupingBy来进行分组。
1)可以根据用户所在城市进行分组
结果是一个map,key为不重复的城市名,value为属于该城市的用户列表。已经实现了分组。
2)二级分组,先根据城市分组再根据性别分组
运行结果:
3)如果仅仅想统计各城市的用户个数是多少,并不需要对应的list
按城市分组并统计人数:
运行结果:
4)当然,也可以先进行过滤再分组并统计人数
运行结果:
5)partitioningBy 分区
分区与分组的区别在于,分区是按照true和false来分的,因此partitioningBy 接受的参数的 lambda 也是T->boolean
运行结果:
总结
到目前为止,stream的功能我们已经用了很多了,感觉有点眼花缭乱却无所不能,stream能做的事情远远不止这些。
我们可以多学习使用stream,把原来复杂的sql查询,一遍又一遍地for循环的复杂代码重构,让代码更简洁易懂,可读性强。
拓展阅读:Redis专题(1):构建知识图谱 Redis专题(2):Redis数据结构底层探秘
作者:杨亨
来源:宜信技术学院
本文转载自异步社区。
原文链接:https://www.epubit.com/articleDetails?id=N61ed49b6-33d4-493f-9f60-18a2db5120cd
- 点赞
- 收藏
- 关注作者
评论(0)