纯Python实现逻辑回归
前几天使用后sklearn实现了逻辑回归,这里用纯python实现逻辑回归.
首先,我们定义一个sigmoid函数
def sigmoid(inX): #sigmoid函数 return 1.0/(1+exp(-inX))
这里使用梯度上升进行逻辑回归
#梯度上升求最优参数
def gradAscent(dataMat, labelMat): dataMatrix=mat(dataMat) #将读取的数据转换为矩阵 classLabels=mat(labelMat).transpose() #将读取的数据转换为矩阵 m,n = shape(dataMatrix) alpha = 0.001 #设置梯度的阀值,该值越大梯度上升幅度越大 maxCycles = 500 #设置迭代的次数,一般看实际数据进行设定,有些可能200次就够了 weights = ones((n,1)) #设置初始的参数,并都赋默认值为1。注意这里权重以矩阵形式表示三个参数。 for k in range(maxCycles): h = sigmoid(dataMatrix * weights) error = (classLabels - h) #求导后差值 weights = weights + alpha * dataMatrix.transpose()* error #迭代更新权重 return weights
代码里的error与weights已经再上面的公式中可以体现。
考虑到当数据量比较大时,如果每次迭代都选择全量数据进行计算,计算量会非常大。所以采用每次迭代中一次只选择其中的一行数据进行更新权重。
def stocGradAscent0(dataMat, labelMat): dataMatrix=mat(dataMat) classLabels=labelMat m,n=shape(dataMatrix) alpha=0.01 maxCycles = 500 weights=ones((n,1)) for k in range(maxCycles): for i in range(m): #遍历计算每一行 h = sigmoid(sum(dataMatrix[i] * weights)) error = classLabels[i] - h weights = weights + alpha * error * dataMatrix[i].transpose() return weights
对方法进一步进行改进,在每次迭代中随机选择样本来更新权重,并且随迭代次数增加,权重变化越小。
def stocGradAscent1(dataMat, labelMat): dataMatrix=mat(dataMat) classLabels=labelMat m,n=shape(dataMatrix) weights=ones((n,1)) maxCycles=500 for j in range(maxCycles): #迭代 dataIndex=[i for i in range(m)] for i in range(m): #随机遍历每一行 alpha=4/(1+j+i)+0.0001 #随迭代次数增加,权重变化越小。 randIndex=int(random.uniform(0,len(dataIndex))) #随机抽样 h=sigmoid(sum(dataMatrix[randIndex]*weights)) error=classLabels[randIndex]-h weights=weights + alpha*error*dataMatrix[randIndex].transpose() del(dataIndex[randIndex]) #去除已经抽取的样本 return weights
三种方法得到了weights后,我们对结果进行可视化
def plotBestFit(weights): #画出最终分类的图 import matplotlib.pyplot as plt dataMat,labelMat=loadDataSet() dataArr = array(dataMat) n = shape(dataArr)[0] xcord1 = []; ycord1 = [] xcord2 = []; ycord2 = [] for i in range(n): if int(labelMat[i])== 1: xcord1.append(dataArr[i,1]) ycord1.append(dataArr[i,2]) else: xcord2.append(dataArr[i,1]) ycord2.append(dataArr[i,2]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=30, c='red', marker='s') ax.scatter(xcord2, ycord2, s=30, c='green') x = arange(-3.0, 3.0, 0.1) y = (-weights[0]-weights[1]*x)/weights[2] ax.plot(x, y) plt.xlabel('X1') plt.ylabel('X2') plt.show()
下面是三种方法得到的weights的结果
gradAscent迭代500次后得到的weights gradAscent迭代500次后得到的weights可视化分类 stocGradAscent0迭代500次后得到的weights stocGradAscent0迭代500次后得到的weights可视化分类 stocGradAscent1迭代500次后得到的weights stocGradAscent1迭代500次后得到的weights可视化分类
可以看到,这三种方法发挥的weights存在细微差别,但基本都已经使用逻辑回归对数据进行了分类。
实际上,得到的weights就是特征的权值,这里我们将样本数据进行向量化,约定训练数据的矩阵形式如下,x的每一行为一条训练样本,而每一列为不同的特称取值
逻辑回归的优缺点
优点:
速度快,适合二分类问题
简单易于理解,直接看到各个特征的权重
能容易地更新模型吸收新的数据
缺点:
对数据和场景的适应能力有局限性,不如决策树算法适应性那么强
样本数据集,可以复制下来,保存为testSet.txt
-0.017612 14.053064 0 -1.395634 4.662541 1 -0.752157 6.538620 0 -1.322371 7.152853 0 0.423363 11.054677 0 0.406704 7.067335 1 0.667394 12.741452 0 -2.460150 6.866805 1 0.569411 9.548755 0 -0.026632 10.427743 0 0.850433 6.920334 1 1.347183 13.175500 0 1.176813 3.167020 1 -1.781871 9.097953 0 -0.566606 5.749003 1 0.931635 1.589505 1 -0.024205 6.151823 1 -0.036453 2.690988 1 -0.196949 0.444165 1 1.014459 5.754399 1 1.985298 3.230619 1 -1.693453 -0.557540 1 -0.576525 11.778922 0 -0.346811 -1.678730 1 -2.124484 2.672471 1 1.217916 9.597015 0 -0.733928 9.098687 0 -3.642001 -1.618087 1 0.315985 3.523953 1 1.416614 9.619232 0 -0.386323 3.989286 1 0.556921 8.294984 1 1.224863 11.587360 0 -1.347803 -2.406051 1 1.196604 4.951851 1 0.275221 9.543647 0 0.470575 9.332488 0 -1.889567 9.542662 0 -1.527893 12.150579 0 -1.185247 11.309318 0 -0.445678 3.297303 1 1.042222 6.105155 1 -0.618787 10.320986 0 1.152083 0.548467 1 0.828534 2.676045 1 -1.237728 10.549033 0 -0.683565 -2.166125 1 0.229456 5.921938 1 -0.959885 11.555336 0 0.492911 10.993324 0 0.184992 8.721488 0 -0.355715 10.325976 0 -0.397822 8.058397 0 0.824839 13.730343 0 1.507278 5.027866 1 0.099671 6.835839 1 -0.344008 10.717485 0 1.785928 7.718645 1 -0.918801 11.560217 0 -0.364009 4.747300 1 -0.841722 4.119083 1 0.490426 1.960539 1 -0.007194 9.075792 0 0.356107 12.447863 0 0.342578 12.281162 0 -0.810823 -1.466018 1 2.530777 6.476801 1 1.296683 11.607559 0 0.475487 12.040035 0 -0.783277 11.009725 0 0.074798 11.023650 0 -1.337472 0.468339 1 -0.102781 13.763651 0 -0.147324 2.874846 1 0.518389 9.887035 0 1.015399 7.571882 0 -1.658086 -0.027255 1 1.319944 2.171228 1 2.056216 5.019981 1 -0.851633 4.375691 1 -1.510047 6.061992 0 -1.076637 -3.181888 1 1.821096 10.283990 0 3.010150 8.401766 1 -1.099458 1.688274 1 -0.834872 -1.733869 1 -0.846637 3.849075 1 1.400102 12.628781 0 1.752842 5.468166 1 0.078557 0.059736 1 0.089392 -0.715300 1 1.825662 12.693808 0 0.197445 9.744638 0 0.126117 0.922311 1 -0.679797 1.220530 1 0.677983 2.556666 1 0.761349 10.693862 0 -2.168791 0.143632 1 1.388610 9.341997 0 0.317029 14.739025 0
参考资料:
机器学习算法–逻辑回归原理介绍
李航《统计学习方法》
周志华《机器学习》
机器学习(Machine Learning)- 吴恩达(Andrew Ng)
CATEGORIES
机器学习
TAGS
机器学习
====================================================================
本文发表在李思原博客“机器在学习”
链接:http://www.siyuanblog.com/?p=808
欢迎扫码关注我的微信公众号:聚数为塔
=====================================================================
- 点赞
- 收藏
- 关注作者
评论(0)