第一个Spark Streaming例子
Spark Streaming是一种近实时的流式计算模型,它将作业分解成一批一批的短小的批处理任务,然后并行计算,具有可扩展,高容错,高吞吐,实时性高等一系列优点,在某些场景可达到与Storm一样的处理程度或优于storm,也可以无缝集成多重日志收集工具或队列中转器,比如常见的 kakfa,flume,redis,logstash等,计算完后的数据结果,也可以 存储到各种存储系统中,如HDFS,数据库等,一张简单的数据流图如下:
Spark Streaming内部处理流程:Spark Streaming内部处理流程:
接下来我们以NetworkWordCount为例,掌握Spark Streaming该如何使用。
package org.apache.spark.examples.streaming
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
object NetworkWordCount {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("Usage: NetworkWordCount ")
System.exit(1)
}
StreamingExamples.setStreamingLogLevels()
// Create the context with a 1 second batch size
val sparkConf = new SparkConf().setAppName("NetworkWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(1))
// Create a socket stream on target ip:port and count the
// words in input stream of \n delimited text (eg. generated by 'nc')
// Note that no duplication in storage level only for running locally.
// Replication necessary in distributed scenario for fault tolerance.
val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_AND_DISK_SER)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
在spark 集群上启动NetworkWordCount。
然后在对应的linux机器上,开一个nc服务,并写入一些数据:
然后在控制台,可见计算结果,并且是排好序的:
至此,第一个Spark Streaming的demo就入门了,大家可以自己动手进行扩展,比如从kakfa或者redis里面接受数据,然后存储到hbase,或者mysql或者solr,lucene,elasticsearch索引中。
- 点赞
- 收藏
- 关注作者
评论(0)