李沐大神火遍知乎的《动手学深度学习》出版啦!
就在几年前,不管在大公司还是创业公司,都鲜有工程师和科学家将深度学习应用到智能产品与服务中。作为深度学习前身的神经网络,才刚刚摆脱被机器学习学术界认为是过时工具的印象。那个时候,即使是机器学习也非新闻头条的常客。它仅仅被看作是一门具有前瞻性,并拥有一系列小范围实际应用的学科。在包含计算机视觉和自然语言处理在内的实际应用通常需要大量的相关领域知识:这些实际应用被视为相互独立的领域,而机器学习只占其中一小部分。
然而仅仅在这几年之内,深度学习便令全世界大吃一惊。它非常有力地推动了计算机视觉、自然语言处理、自动语音识别、强化学习和统计建模等多个领域的快速发展。随着这些领域的不断进步,我们现在可以制造自动驾驶的汽车,基于短信、邮件甚至电话的自动回复系统,以及在围棋中击败最优秀人类选手的软件。这些由深度学习带来的新工具也正产生着广泛的影响:它们改变了电影制作和疾病诊断的方式,并在从天体物理学到生物学等各个基础科学中扮演越来越重要的角色。
在深度学习热火潮天的时代里,一本名为《动手学深度学习》的书诞生了,这是一本面向在校学生、工程师和研究人员的交互式深度学习书籍。这本书的撰写在知乎引起了强烈的关注,火遍整个知乎,这些深度学习的爱好者,都对这本书的内容给出了高度赞誉。
##用图说话,来自知乎
##此书庐山真面目,看你熟不熟
###主体目录 - 深度学习简介 - 预备知识 - 深度学习基础 - 深度学习计算 - 卷积神经网络 - 循环神经网络 - 优化算法 - 计算性能 - 计算机视觉 - 自然语言处理 - 附录
##内容简介 本书将全面介绍深度学习从模型构造到模型训练的方方面面,以及它们在计算机视觉和自然语言处理中的应用。我们不仅将阐述算法原理,还将基于Apache MXNet对算法进行实现,并实际运行它们。本书的每一节都是一个Jupyter记事本。它将文字、公式、图像、代码和运行结果结合在了一起。读者不但能直接阅读它们,而且可以运行它们以获得交互式的学习体验。
##本书特点 本书的一大特点是每一节的代码都是可以运行的。
本书的代码基于Apache MXNet实现。
我们提供代码的主要目的在于增加一个在文字、图像和公式外的学习深度学习算法的方式,以及一个便于理解各个算法在真实数据上的实际效果的交互式环境。
##对本书的赞誉
###来自学术界的声音
这是一本及时且引人入胜的书。它不仅提供了深度学习原理的全面概述,还提供了具有编程代码的详细算法,此外,还提供了计算机视觉和自然语言处理中有关深度学习的最新介绍。如果你想钻研深度学习,请研读这本书!
韩家炜,ACM 院士、IEEE 院士
{--:}美国伊利诺伊大学香槟分校计算机系 Abel Bliss 教授
这是对机器学习文献的一个很受欢迎的补充,重点是通过集成Jupyter记事本实现的动手经验。深度学习的学生应该能体会到,这对于熟练掌握这一领域是非常宝贵的。
Bernhard Schölkopf,ACM 院士、德国国家科学院院士
德国马克斯•普朗克研究所智能系统院院长
这本书基于MXNet框架来介绍深度学习技术,书中代码可谓“所学即所用”,为喜欢通过Python代码进行学习的读者接触、了解深度学习技术提供了很大的便利。
周志华,ACM 院士、IEEE 院士、AAAS 院士、南京大学计算机科学与技术系主任
##来自工业界的声音
虽然业界已经有不错的深度学习方面的书籍,但都不够紧密结合工业界的应用实践。 我认为《动手学深度学习》是最适合工业界研发工程师学习的,因为这本书把算法理论、应用场景、代码实例都完美地联系在一起,引导读者把理论学习和应用实践紧密结合,知行合一,在动手中学习,在体会和领会中不断深化对深度学习的理解。 因此我毫无保留地向广大的读者强烈推荐《动手学深度学习》。
余凯。地平线公司创始人、首席执行官
强烈推荐这本书!它其实远不只是一本书:它不仅讲解深度学习背后的数学原理,更是一个编程工作台与记事本,让读者可以一边动手学习一边收到反馈,它还是个开源社区平台,让大家可以交流。作为在AI学术界和工业界都长期工作过的人,我特别赞赏这种手脑一体的学习方式,既能增强实践能力,又可以在解决问题中锻炼独立思考和批判性思维。
作者们是算法、工程兼强的业界翘楚,他们能奉献出这样的一本好的开源书,为他们点赞!
漆远,蚂蚁金服副总裁、首席人工智能科学家:
这是一本基于Apache MXNet的深度学习实战书籍,可以帮助读者快速上手并掌握使用深度学习工具的基本技能。本书的几个作者都在机器学习领域有着非常丰富的经验。他们不光有大量的工业界实践经验,也有非常高的学术成就,所以对机器学习领域的前沿算法理解深刻。这使得作者们在提供优质代码的同时,也可以把最前沿的算法和概念深入浅出地介绍给读者。这本书可以帮助深度学习实践者快速提升自己的能力。
张潼,腾讯人工智能实验室主任
一年前作者开始在将门技术社群中做深度学习的系列讲座,当时我就对动手式讲座的内容和形式感到耳目一新。一年过去,看到《动手学深度学习》在持续精心打磨后终于成书出版,感觉十分欣喜!
深度学习是当前人工智能研究中的热门领域,吸引了大量感兴趣的开发者踊跃学习相关的开发技术。然而对大多数学习者而言,掌握深度学习是一件很不容易的事情,需要相继翻越数学基础、算法理论、编程开发、领域应用、软硬优化等几座大山。因此学习过程不容易一帆风顺,我也看到很多学习者还没进入开发环节就在理论学习的过程中抱憾放弃了。然而《动手学深度学习》却是一本很容易让学习者上瘾的书,它最大的特色是强调在动手编程中学习理论和培养实战能力。阅读本书最愉悦的感受是它很好地平衡了理论介绍和编程实操,内容简明扼要,衔接自然流畅,既反映了现代深度学习的进展,又兼具易学和实用特性,是深度学习爱好者难得的学习材料。特别值得称赞的是本书选择了Jupyter记事本作为开发学习环境,将教材、文档和代码统一起来,给读者提供了可以立即尝试修改代码和观察运行效果的交互式的学习体验,使学习充满了乐趣。
在过去的一年中,作者和社区成员对《动手学深度学习》进行了大量优化修改才得以成书,可以说这是一本深度学习前沿实践者给深度学习爱好者带来的诚心之作,相信大家都能在阅读和实践中拥有一样的共鸣。
本文转载自异步社区
原文链接:
https://www.epubit.com/articleDetails?id=Na3a1538b-b855-4e86-a48d-9b2be0f9dd1b |
- 点赞
- 收藏
- 关注作者
评论(0)