建议使用以下浏览器,以获得最佳体验。 IE 9.0+以上版本 Chrome 31+ 谷歌浏览器 Firefox 30+ 火狐浏览器
请选择 进入手机版 | 继续访问电脑版
设置昵称

在此一键设置昵称,即可参与社区互动!

确定
我再想想
选择版块
标签
您还可以添加5个标签
  • 没有搜索到和“关键字”相关的标签
  • 云产品
  • 解决方案
  • 技术领域
  • 通用技术
  • 平台功能
取消

倪平宇

发帖: 75粉丝: 42

发消息 + 关注

发表于2019年08月29日 11:20:15 1426 2
直达本楼层的链接
楼主
显示全部楼层
[技术交流] Deep Learning(深度学习) CNN的结构

卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。 这些良好的性能是网络在有监督方式下学会的,网络的结构主要有稀疏连接和权值共享两个特点,包括如下形式的约束:
1、 特征提取。每一个神经元从上一层的局部接受域得到突触输人,因而迫使它提取局部特征。一旦一个特征被提取出来, 只要它相对于其他特征的位置被近似地保留下来,它的精确位置就变得没有那么重要了。
2 、特征映射。网络的每一个计算层都是由多个特征映射组成的,每个特征映射都是平面形式的。平面中单独的神经元在约束下共享 相同的突触权值集,这种结构形式具有如下的有益效果:a.平移不变性。b.自由参数数量的缩减(通过权值共享实现)。
3、子抽样。每个卷积层后面跟着一个实现局部平均和子抽样的计算层,由此特征映射的分辨率降低。这种操作具有使特征映射的输出对平移和其他 形式的变形的敏感度下降的作用。

卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。


举报
分享

分享文章到朋友圈

分享文章到微博

Joey啊

发帖: 84粉丝: 16

发消息 + 关注

发表于2019年08月29日 17:21:50
直达本楼层的链接
沙发
显示全部楼层

点赞 评论 引用 举报

Joey啊

发帖: 84粉丝: 16

发消息 + 关注

发表于2019年08月29日 17:21:56
直达本楼层的链接
板凳
显示全部楼层

点赞 评论 引用 举报

游客

富文本
Markdown
您需要登录后才可以回帖 登录 | 立即注册