建议使用以下浏览器,以获得最佳体验。 IE 9.0+以上版本 Chrome 31+ 谷歌浏览器 Firefox 30+ 火狐浏览器
设置昵称

在此一键设置昵称,即可参与社区互动!

确定
我再想想
选择版块
EI企业智能 主题:15184帖子:291832

【其他】

标量、向量、矩阵和张量

角动量 2020/5/31 974

学习线性代数,会涉及以下几类数学概念:

  • 标量:一个标量就是一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。 我们用斜体表示标量。标量通常被赋予小写的变量名称。 当我们介绍标量时,会明确它们是哪种类型的数。 比如,在定义实数标量时,我们可能会说”令$\Ss \in \SetR$表示一条线的斜率”;在定义自然数标量时,我们可能会说”令$\Sn\in\SetN$表示元素的数目”。

  • 向量:一个向量是一列数。 这些数是有序排列的。 通过次序中的索引,我们可以确定每个单独的数。 通常我们赋予向量粗体的小写变量名称,比如$\Vx$。 向量中的元素可以通过带脚标的斜体表示。 向量$\Vx$的第一个元素是$\Sx_1$,第二个元素是$\Sx_2$,等等。 我们也会注明存储在向量中的元素是什么类型的。 如果每个元素都属于$\SetR$,并且该向量有$\Sn$个元素,那么该向量属于实数集$\SetR$的$\Sn$次笛卡尔乘积构成的集合,记为$\SetR^n$。 当需要明确表示向量中的元素时,我们会将元素排列成一个方括号包围的纵列: \begin{equation} \Vx=\begin{bmatrix} \Sx_1 \
    \Sx_2 \ \vdots \ \Sx_n \end{bmatrix}. \end{equation} 我们可以把向量看作空间中的点,每个元素是不同坐标轴上的坐标。

    有时我们需要索引向量中的一些元素。 在这种情况下,我们定义一个包含这些元素索引的集合,然后将该集合写在脚标处。 比如,指定$\Sx_1$,$\Sx_3$和$\Sx_6$,我们定义集合$S={1,3,6}$,然后写作$\Vx_S$。我 们用符号-表示集合的补集中的索引。 比如$\Vx_{-1}$表示$\Vx$中除$\Sx_1$外的所有元素,$\Vx_{-S}$表示$\Vx$中除$\Sx_1$,$\Sx_3$,$\Sx_6$外所有元素构成的向量。

  • 矩阵:矩阵是一个二维数组,其中的每一个元素被两个索引(而非一个)所确定。 我们通常会赋予矩阵粗体的大写变量名称,比如$\MA$。 如果一个实数矩阵高度为$m$,宽度为$n$,那么我们说$\MA\in \SetR^{m\times n}$。 我们在表示矩阵中的元素时,通常以不加粗的斜体形式使用其名称,索引用逗号间隔。 比如,$\SA_{1,1}$表示$\MA$左上的元素,$\SA_{m,n}$表示$\MA$右下的元素。 我们通过用”:”表示水平坐标,以表示垂直坐标$\Si$中的所有元素。 比如,$\MA_{i,:}$表示$\MA$中垂直坐标$i$上的一横排元素。 这也被称为$\MA$的第$i$~行。 同样地,$\MA_{:,i}$表示$\MA$的第$i$~列。 当我们需要明确表示矩阵中的元素时,我们将它们写在用方括号括起来的数组中: \begin{equation} \begin{bmatrix} A_{1,1} & A_{1,2}
    A_{2,1} & A_{2,2}
    \end{bmatrix}. \end{equation} 有时我们需要索引矩阵值表达式,而这些表达式不是单个字母。 在这种情况下,我们在表达式后面接下标,但不必将矩阵的变量名称小写化。 比如,$f(\MA)_{i,j}$表示函数$f$作用在$\MA$上输出的矩阵的第$i$行第$j$列元素。

  • 张量:在某些情况下,我们会讨论坐标超过两维的数组。 一般地,一个数组中的元素分布在若干维坐标的规则网格中,我们称之为张量。 我们使用字体$\TSA$来表示张量”A”。 张量$\TSA$中坐标为$(i,j,k)$的元素记作$\TEA_{i,j,k}$。

转置是矩阵的重要操作之一。 矩阵的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线被称为主对角线。 \fig?显示了这个操作。 我们将矩阵$\MA$的转置表示为$\MA^\top$,定义如下 \begin{equation} (\MA^\top){i,j}= \SA{j,i}. \end{equation}

向量可以看作只有一列的矩阵。 对应地,向量的转置可以看作是只有一行的矩阵。 有时,我们通过将向量元素作为行矩阵写在文本行中,然后使用转置操作将其变为标准的列向量,来定义一个向量,比如$\Vx=[\Sx_1, \Sx_2, \Sx_3]^\top$.

标量可以看作是只有一个元素的矩阵。 因此,标量的转置等于它本身,$\Sa=\Sa^\top$。

\begin{figure}[!hbt] \ifOpenSource \centerline{\includegraphics{figure.pdf}} \else \centerline{\includegraphics{Chapter2/figures/transpose}} \fi \caption{矩阵的转置可以看成以主对角线为轴的一个镜像。} \end{figure}

只要矩阵的形状一样,我们可以把两个矩阵相加。 两个矩阵相加是指对应位置的元素相加,比如$\MC=\MA+\MB$,其中$\SC_{i,j}= \SA_{i,j}+\SB_{i,j}$。

标量和矩阵相乘,或是和矩阵相加时,我们只需将其与矩阵的每个元素相乘或相加,比如$\MD = \Sa \cdot \MB + \Sc$,其中$\SD_{i,j} = \Sa\cdot \SB_{i,j} + \Sc$。

在深度学习中,我们也使用一些不那么常规的符号。 我们允许矩阵和向量相加,产生另一个矩阵:$\MC=\MA + \Vb$,其中$\SC_{i,j}= \SA_{i,j} + \Sb_{j}$。 换言之,向量$\Vb$和矩阵$\MA$的每一行相加。 这个简写方法使我们无需在加法操作前定义一个将向量$\Vb$复制到每一行而生成的矩阵。 这种隐式地复制向量$\Vb$到很多位置的方式,被称为广播。


回复2

某地瓜
0 0
2020/5/31 19:03

学习了!!!

2020/5/31 20:49

感谢分享

上划加载中
直达楼层
标签
您还可以添加5个标签
  • 没有搜索到和“关键字”相关的标签
  • 云产品
  • 解决方案
  • 技术领域
  • 通用技术
  • 平台功能
取消

采纳成功

您已采纳当前回复为最佳回复

角动量

发帖: 218粉丝: 8

发消息 + 关注

发表于2020年05月31日 09:51:49 974 2
直达本楼层的链接
楼主
显示全部楼层
[其他] 标量、向量、矩阵和张量

学习线性代数,会涉及以下几类数学概念:

  • 标量:一个标量就是一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。 我们用斜体表示标量。标量通常被赋予小写的变量名称。 当我们介绍标量时,会明确它们是哪种类型的数。 比如,在定义实数标量时,我们可能会说”令$\Ss \in \SetR$表示一条线的斜率”;在定义自然数标量时,我们可能会说”令$\Sn\in\SetN$表示元素的数目”。

  • 向量:一个向量是一列数。 这些数是有序排列的。 通过次序中的索引,我们可以确定每个单独的数。 通常我们赋予向量粗体的小写变量名称,比如$\Vx$。 向量中的元素可以通过带脚标的斜体表示。 向量$\Vx$的第一个元素是$\Sx_1$,第二个元素是$\Sx_2$,等等。 我们也会注明存储在向量中的元素是什么类型的。 如果每个元素都属于$\SetR$,并且该向量有$\Sn$个元素,那么该向量属于实数集$\SetR$的$\Sn$次笛卡尔乘积构成的集合,记为$\SetR^n$。 当需要明确表示向量中的元素时,我们会将元素排列成一个方括号包围的纵列: \begin{equation} \Vx=\begin{bmatrix} \Sx_1 \
    \Sx_2 \ \vdots \ \Sx_n \end{bmatrix}. \end{equation} 我们可以把向量看作空间中的点,每个元素是不同坐标轴上的坐标。

    有时我们需要索引向量中的一些元素。 在这种情况下,我们定义一个包含这些元素索引的集合,然后将该集合写在脚标处。 比如,指定$\Sx_1$,$\Sx_3$和$\Sx_6$,我们定义集合$S={1,3,6}$,然后写作$\Vx_S$。我 们用符号-表示集合的补集中的索引。 比如$\Vx_{-1}$表示$\Vx$中除$\Sx_1$外的所有元素,$\Vx_{-S}$表示$\Vx$中除$\Sx_1$,$\Sx_3$,$\Sx_6$外所有元素构成的向量。

  • 矩阵:矩阵是一个二维数组,其中的每一个元素被两个索引(而非一个)所确定。 我们通常会赋予矩阵粗体的大写变量名称,比如$\MA$。 如果一个实数矩阵高度为$m$,宽度为$n$,那么我们说$\MA\in \SetR^{m\times n}$。 我们在表示矩阵中的元素时,通常以不加粗的斜体形式使用其名称,索引用逗号间隔。 比如,$\SA_{1,1}$表示$\MA$左上的元素,$\SA_{m,n}$表示$\MA$右下的元素。 我们通过用”:”表示水平坐标,以表示垂直坐标$\Si$中的所有元素。 比如,$\MA_{i,:}$表示$\MA$中垂直坐标$i$上的一横排元素。 这也被称为$\MA$的第$i$~行。 同样地,$\MA_{:,i}$表示$\MA$的第$i$~列。 当我们需要明确表示矩阵中的元素时,我们将它们写在用方括号括起来的数组中: \begin{equation} \begin{bmatrix} A_{1,1} & A_{1,2}
    A_{2,1} & A_{2,2}
    \end{bmatrix}. \end{equation} 有时我们需要索引矩阵值表达式,而这些表达式不是单个字母。 在这种情况下,我们在表达式后面接下标,但不必将矩阵的变量名称小写化。 比如,$f(\MA)_{i,j}$表示函数$f$作用在$\MA$上输出的矩阵的第$i$行第$j$列元素。

  • 张量:在某些情况下,我们会讨论坐标超过两维的数组。 一般地,一个数组中的元素分布在若干维坐标的规则网格中,我们称之为张量。 我们使用字体$\TSA$来表示张量”A”。 张量$\TSA$中坐标为$(i,j,k)$的元素记作$\TEA_{i,j,k}$。

转置是矩阵的重要操作之一。 矩阵的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线被称为主对角线。 \fig?显示了这个操作。 我们将矩阵$\MA$的转置表示为$\MA^\top$,定义如下 \begin{equation} (\MA^\top){i,j}= \SA{j,i}. \end{equation}

向量可以看作只有一列的矩阵。 对应地,向量的转置可以看作是只有一行的矩阵。 有时,我们通过将向量元素作为行矩阵写在文本行中,然后使用转置操作将其变为标准的列向量,来定义一个向量,比如$\Vx=[\Sx_1, \Sx_2, \Sx_3]^\top$.

标量可以看作是只有一个元素的矩阵。 因此,标量的转置等于它本身,$\Sa=\Sa^\top$。

\begin{figure}[!hbt] \ifOpenSource \centerline{\includegraphics{figure.pdf}} \else \centerline{\includegraphics{Chapter2/figures/transpose}} \fi \caption{矩阵的转置可以看成以主对角线为轴的一个镜像。} \end{figure}

只要矩阵的形状一样,我们可以把两个矩阵相加。 两个矩阵相加是指对应位置的元素相加,比如$\MC=\MA+\MB$,其中$\SC_{i,j}= \SA_{i,j}+\SB_{i,j}$。

标量和矩阵相乘,或是和矩阵相加时,我们只需将其与矩阵的每个元素相乘或相加,比如$\MD = \Sa \cdot \MB + \Sc$,其中$\SD_{i,j} = \Sa\cdot \SB_{i,j} + \Sc$。

在深度学习中,我们也使用一些不那么常规的符号。 我们允许矩阵和向量相加,产生另一个矩阵:$\MC=\MA + \Vb$,其中$\SC_{i,j}= \SA_{i,j} + \Sb_{j}$。 换言之,向量$\Vb$和矩阵$\MA$的每一行相加。 这个简写方法使我们无需在加法操作前定义一个将向量$\Vb$复制到每一行而生成的矩阵。 这种隐式地复制向量$\Vb$到很多位置的方式,被称为广播。


举报
分享

分享文章到朋友圈

分享文章到微博

采纳成功

您已采纳当前回复为最佳回复

某地瓜

发帖: 144粉丝: 5

发消息 + 关注

发表于2020年05月31日 19:03:21
直达本楼层的链接
沙发
显示全部楼层

学习了!!!

点赞 评论 引用 举报

采纳成功

您已采纳当前回复为最佳回复

G-washington

发帖: 310粉丝: 98

发消息 + 关注

发表于2020年05月31日 20:49:37
直达本楼层的链接
板凳
显示全部楼层

感谢分享

点赞 评论 引用 举报

游客

您需要登录后才可以回帖 登录 | 立即注册

结贴

您对问题的回复是否满意?
满意度
非常满意 满意 一般 不满意
我要反馈
0/200