建议使用以下浏览器,以获得最佳体验。 IE 9.0+以上版本 Chrome 31+ 谷歌浏览器 Firefox 30+ 火狐浏览器
请选择 进入手机版 | 继续访问电脑版
设置昵称

在此一键设置昵称,即可参与社区互动!

确定
我再想想
选择版块
直达楼层
标签
您还可以添加5个标签
  • 没有搜索到和“关键字”相关的标签
  • 云产品
  • 解决方案
  • 技术领域
  • 通用技术
  • 平台功能
取消

采纳成功

您已采纳当前回复为最佳回复

角动量

发帖: 218粉丝: 8

发消息 + 关注

发表于2021年02月25日 12:05:57 265 3
直达本楼层的链接
楼主
显示全部楼层
[其他] 面向推荐学习公平表示:一种图视角


image.png

推荐系统作为人工智能的一个重要应用,是最普遍的计算机辅助系统之一,帮助用户找到潜在的兴趣项目。近年来,人工智能应用的公平性问题引起了研究人员的广泛关注。这些方法大多假定实例独立,并设计复杂的模型来消除敏感信息,以促进公平。然而,推荐系统与这些方法有很大的不同,因为用户和商品自然形成一个用户-商品二部图,并且在图结构中相互协作。在本文中,我们提出了一种新的基于图的技术来保证任何推荐模型的公平性。这里的公平性要求指的是在用户建模过程中不暴露敏感特性集。具体来说,给定任何推荐模型的原始嵌入,我们学习一组过滤器,这些过滤器将每个用户和每个物品的原始嵌入转换为一个基于敏感特征集的过滤嵌入空间。对于每个用户,这种转换是在以用户为中心的图的对抗学习下实现的,以便在过滤后的用户嵌入和该用户的子图结构之间模糊每个敏感特征。最后,大量的实验结果清楚地表明了我们所提出的模型在公平推荐方面的有效性。

https://github.com/newlei/FairGo


image.png


推荐系统

举报
分享

分享文章到朋友圈

分享文章到微博

采纳成功

您已采纳当前回复为最佳回复

初学者7000

发帖: 256粉丝: 3

发消息 + 关注

发表于2021年02月25日 13:07:47
直达本楼层的链接
沙发
显示全部楼层

学习了

点赞 评论 引用 举报

采纳成功

您已采纳当前回复为最佳回复

小强鼓掌

发帖: 168粉丝: 2

发消息 + 关注

发表于2021年02月28日 14:49:59
直达本楼层的链接
板凳
显示全部楼层

感谢分享

点赞 评论 引用 举报

采纳成功

您已采纳当前回复为最佳回复

zhengyong134

发帖: 65粉丝: 2

发消息 + 关注

发表于2021年02月28日 15:51:38
直达本楼层的链接
地板
显示全部楼层

mark一下

点赞 评论 引用 举报

游客

富文本
Markdown
您需要登录后才可以回帖 登录 | 立即注册

结贴

您对问题的回复是否满意?
满意度
非常满意 满意 一般 不满意
我要反馈
0/200