KNN算法及性能评估之鸢尾花特征分类【机器学习】

上进小菜猪 发表于 2022/06/23 11:54:20 2022/06/23
【摘要】 一.前言 1.1 本文原理KNN算法:通过在整个训练集中搜索k个最相似的实例(邻居)并汇总这些k个实例的输出变量来预测新的数据点。它可以用于分类和回归,是一种监督学习算法。混淆矩阵:至少有m*m的表。前m行和m列的条目CMJ表示分类器标记为J的类I元组数。 1.2 本文目的使用scikit-learn的数据归一化函数,对鸢尾花数据进行归一化;使用scikit-learn的切分数据集函数,将...

一.前言

1.1 本文原理

KNN算法:通过在整个训练集中搜索k个最相似的实例(邻居)并汇总这些k个实例的输出变量来预测新的数据点。它可以用于分类和回归,是一种监督学习算法。
混淆矩阵:至少有m*m的表。前m行和m列的条目CMJ表示分类器标记为J的类I元组数。

1.2 本文目的

  1. 使用scikit-learn的数据归一化函数,对鸢尾花数据进行归一化;
  2. 使用scikit-learn的切分数据集函数,将鸢尾花数据切分为训练数据集和测试数据集;
  3. 使用scikit-learn的KNN算法,对鸢尾花进行分类训练和测试(即预测);
  4. 使用scikit-learn的混淆矩阵函数,显示性能评估的混淆矩阵以及准确率,并分析混淆矩阵的内容;

二.实验过程

2.1 使用scikit-learn的数据归一化函数,对鸢尾花数据进行归一化;

老规矩,先使用load_iris模块,里面有150组鸢尾花特征数据,我们可以拿来进行学习特征分类。
如下代码:

from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target

引入混淆矩阵confusion_matrix函数,评估方法函数accuracy_score,数据预处理函数模块preprocessing如下:

from sklearn.metrics import confusion_matrix,accuracy_score,recall_score,precision_score
from sklearn.model_selection import train_test_split
from sklearn import preprocessing

在这里插入图片描述

数据预处理:按列归一化

iris_X=preprocessing.scale(X)

输出归一化结果如下:

print(iris_X)

在这里插入图片描述

2.2 使用scikit-learn的切分数据集函数,将鸢尾花数据切分为训练数据集和测试数据集;

随机划分训练集和测试集切分数据集函数如下:

X_train,X_test,y_train,y_test =train_test_split(iris_X,y,test_size=0.3,random_state=0)

功能是从样本中随机的按比例选取train_data和test_data
我们输出来看一下:

print(X_train)
print(X_test)
print(y_train)
print(y_test)

在这里插入图片描述

2.3使用scikit-learn的KNN算法,对鸢尾花进行分类训练和测试(即预测);

KNN分类模型如下:
引入k近邻算法模块:

from sklearn import neighbors

KNeighborsClassifier用于实现k近邻投票算法的分类器如下:

model=neighbors.KNeighborsClassifier(n_neighbors=3)

查询使用的邻居数。就是k-NN的k的值,选取最近的k个点。这里选择最近的3个点。

模型训练如下:

model.fit(X_train,y_train)

模型预测如下:

v_pred=model.predict(X_test)

输出鸢尾花特征分类结果如下:

print(v_pred)

在这里插入图片描述

2.4 使用scikit-learn的混淆矩阵函数,显示性能评估的混淆矩阵以及准确率,并分析混淆矩阵的内容;

使用混淆矩阵confusion_matrix:

confusion_matrix(y_test,v_pred)

输出混淆矩阵:

print(confusion_matrix(y_test,v_pred))

输出准确率:
在这里插入图片描述

print("准确率:%.3f"% accuracy_score(y_test,v_pred))

结果如下:
在这里插入图片描述

2.5 分析混淆矩阵的内容以及总结

sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
y_true: 是样本真实分类结果 y_pred: 是样本预测分类结果 labels:是所给出的类别,通过这个可对类别进行选择 sample_weight : 样本权重
预测正确的结果占总样本的百分比的97.8,本次KNN算法对鸢尾花进行分类训练和测试效果非常的准确。
总结:
1.熟悉机器学习之KNN算法及性能评估方法
2.使用KNN算法解决问题并做性能评估
在这里插入图片描述

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区),文章链接,文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件至:cloudbbs@huaweicloud.com进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容。
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。